Study on the fairness of speaker verification systems across accent and gender groups
Keywords:
speaker verification, fairness, bias, calibrationAbstract
Speaker verification (SV) systems are currently used for consequential tasks like giving access to bank accounts or making forensic decisions. Ensuring that these systems are fair and do not disfavor any particular group is crucial. In this work, we analyze the performance of two X-vector-based SV systems across groups defined by gender and accent of the speakers when speaking English. To this end, we created a new dataset based on the VoxCeleb corpus by selecting samples from speakers with accents from different countries. We used this dataset to evaluate system performance of SV systems trained with VoxCeleb data. We show that performance, measured with a calibration-sensitive metric, is markedly degraded on groups that are underrepresented in training: females and speakers with non-native accents in English. Finally, we show that a simple data balancing approach mitigates this undesirable bias on the minority groups without degrading performance on the majority groups.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Mariel Estevez, Luciana Ferrer

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Acorde a estos términos, el material se puede compartir (copiar y redistribuir en cualquier medio o formato) y adaptar (remezclar, transformar y crear a partir del material otra obra), siempre que a) se cite la autoría y la fuente original de su publicación (revista y URL de la obra), b) no se use para fines comerciales y c) se mantengan los mismos términos de la licencia.











