cGAN Application: Dose Prediction For Radiotherapy Treatments
Keywords:
GAN, cGAN, conditional generative adversarial networks, dose prediction, SBRT, prostate cancer, radiotherapyAbstract
In this work we present the application of a model based on conditional generative adversarial networks (cGAN) for the planning of stereotactic body radiotherapy (SBRT) treatments for prostate cancer. Inspired by previous approaches used in dose planning for other types of cancer, we propose an architecture adapted to the characteristics and clinical requirements of prostate cancer treatment. We evaluate the model’s performance using data from real cases treated at a radiotherapy center in C´ordoba, comparing the generated dose plans with the clinical plans approved by specialists. The results obtained on the test set show, on average, a RMSE of 2.98% over the PTV volume, 3.56% over the rectum volume and 2.32% over the bladder volume in the DVHs. This suggests that the use of generative adversarial networks could be a promising tool to improve efficiency in SBRT planning.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Sofia Ortman, Maximiliano Vera Poliche, Caroline Descamps, Edgardo Garrigó, Nehuen Gonzalez-Montoro

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Acorde a estos términos, el material se puede compartir (copiar y redistribuir en cualquier medio o formato) y adaptar (remezclar, transformar y crear a partir del material otra obra), siempre que a) se cite la autoría y la fuente original de su publicación (revista y URL de la obra), b) no se use para fines comerciales y c) se mantengan los mismos términos de la licencia.











