How Much Longer? Estimating Bus Arrival Times with Predictive Models
Keywords:
public transportation, deep learning, urban mobilityAbstract
Predicting bus arrival times accurately is essential for improving urban mobility and enhancing public transportation services. Delays and uncertainty in bus schedules can lead to passenger frustration and inefficient travel planning. In this context, providing real-time, reliable arrival time estimates can help commuters reduce waiting times and make informed decisions. This work explores different predictive approaches, including Linear Regression, ARIMA, Long Short-Term Memory (LSTM), and gated recurrent units (GRU), to estimate bus arrival times based on real-world bus GPS data from the city of Tandil (Buenos Aires, Argentina). Experimental results demonstrate that deep learning models, particularly LSTM, can significantly outperform traditional approaches, highlighting their potential to optimize public transportation systems. In addition to developing predictive models, we provide a mobile application that integrates the prediction models, offering users real-time information on bus arrival times.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Nicolas Miccio Palermo, Marcelo Armentano, Antonela Tommasel

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Acorde a estos términos, el material se puede compartir (copiar y redistribuir en cualquier medio o formato) y adaptar (remezclar, transformar y crear a partir del material otra obra), siempre que a) se cite la autoría y la fuente original de su publicación (revista y URL de la obra), b) no se use para fines comerciales y c) se mantengan los mismos términos de la licencia.











