Automatic detection and classification of brewer's yeast for viability analysis
Keywords:
viabilidad de levadura de cerveza, YOLO, support vector machine (SVM), detección de células, clasificación de levadurasAbstract
The viability and vitality of the yeast Saccharomyces cerevisiae are crucial for brewing. The traditional method for assessing viability, manual counting with methylene blue, is laborious and prone to variability depending on the individual counting. This work addresses the development of an algorithm for the automatic counting and classification of brewing yeast from microscope images using artificial intelligence tools, with the aim of optimizing the reuse and quality control of this input for the industry. The proposed system integrates two main stages: cell detection is performed using the YOLO (You Only Look Once) neural network, while classification into live or dead cells is carried out using a Support Vector Machine (SVM) based on saturation channel histograms in the HSV color space. This combined approach offers a robust and automated solution for yeast quantification and classification, reducing the variability of manual analysis and optimizing quality control in brewing production. The developed methodologies will be incorporated into the Microbrew.AR application.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Noelia Falczuk, Luna Sanes, Pablo Negri, Clara Bruzone, Diego Libkind

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Acorde a estos términos, el material se puede compartir (copiar y redistribuir en cualquier medio o formato) y adaptar (remezclar, transformar y crear a partir del material otra obra), siempre que a) se cite la autoría y la fuente original de su publicación (revista y URL de la obra), b) no se use para fines comerciales y c) se mantengan los mismos términos de la licencia.











