CleanWater: Detection of Aquatic Waste with Satellite Images and Drones with Artificial Intelligence
Keywords:
sustainability, deep neural network, computer visionAbstract
Water body pollution is a growing problem, with 11 million tons of waste dumped into the oceans each year. In Argentina, it is estimated that 70% of the waste along the Buenos Aires coasts is plastic and affects at least 32 species. This work proposes a monitoring system that combines the analysis of satellite images and images captured by drones, to identify waste accumulation. It uses Machine Learning, Classification, and Computer Vision techniques, adapting a ResNet-50 for the analysis of satellite images available from open data sources, and creating a model based on YOLOv8 for images collected using a drone. Results are presented in real time on Tableau and deployed on AWS.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Augusto Javier Saporiti, Rubén Alejandro Casas, Pablo Ezequiel Inchausti

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Acorde a estos términos, el material se puede compartir (copiar y redistribuir en cualquier medio o formato) y adaptar (remezclar, transformar y crear a partir del material otra obra), siempre que a) se cite la autoría y la fuente original de su publicación (revista y URL de la obra), b) no se use para fines comerciales y c) se mantengan los mismos términos de la licencia.











