Deep learning-based parameter estimation for pulmonary hysteresis modeling
Keywords:
respiratory hysteresis, mechanical ventilation, vaiana rosati model, vaiana rosati model, multi-layer perceptron (MLP)Abstract
Respiratory hysteresis, the difference in the pressure-volume curve between inspiration and expiration in each respiratory cycle, is a phenomenon that becomes significant in certain diseases. In order to study such effect and analyze ventilatory control strategies, it is useful to model this aspect of respiratory physiology. This work explores the use of a general analytical hysteresis model, which has emerged in the literature to represent the relationship between applied forces and corresponding displacements in various structures and materials. A model expression was obtained that can be matched to the output of a multilayer perceptron neural network. Then, using data from real patients, the model parameters were adjusted using a deep learning-based parameter estimation method, with errors less than 8% as well as training hyperparameters to obtain better fits. This parameter estimation method represents a significant contribution to the modeling of respiratory hysteresis and could be applied to other fields.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Joaquín Stella, Carolina Alejandra Evangelista, Diego Alejandro Riva, Paul Federico Puleston

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Acorde a estos términos, el material se puede compartir (copiar y redistribuir en cualquier medio o formato) y adaptar (remezclar, transformar y crear a partir del material otra obra), siempre que a) se cite la autoría y la fuente original de su publicación (revista y URL de la obra), b) no se use para fines comerciales y c) se mantengan los mismos términos de la licencia.











