Pipeline para la detección del trastorno específico del lenguaje (SLI) a partir de transcripciones de narrativas espontáneas
Keywords:
Reducción de dimensionalidad, SLI, Random Forest, clasificación, k-NN, NLPAbstract
El Trastorno Específico del Lenguaje (SLI) es un trastorno que afecta la comunicación y puede afectar tanto la comprensión como la expresión. Este estudio se centra en la detección eficaz del SLI en niños, empleando transcripciones de narrativas espontáneas tomadas en 1063 entrevistas. Para dicho fin, proponemos un pipeline de tres etapas en cascada. En la primera etapa, se hace una extracción de características y una reducción de dimensionalidad de los datos usando en conjunto, los métodos de Random Forest (RF) y correlación de Spearman. En la segunda etapa se estiman las variables más predictivas de la primera etapa usando regresión logística, las cuales son usadas en la última etapa, para detectar el trastorno SLI en niños a partir de transcripciones de narrativas espontáneas usando un clasificador de vecinos más cercanos. Los resultados revelaron una precisión del 97,13% en la identificación del SLI, destacándose aspectos como el largo de las respuestas, la calidad de sus enunciados y la complejidad del lenguaje. Este nuevo enfoque enmarcado en procesamiento natural del lenguaje, ofrece beneficios significativos al campo de la detección de SLI, al evitar complejas variables subjetivas y centrarse en métricas cuantitativas directamente relacionadas con el desempeño del niño.
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Santiago Arena, Antonio Quintero-Rincón

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Acorde a estos términos, el material se puede compartir (copiar y redistribuir en cualquier medio o formato) y adaptar (remezclar, transformar y crear a partir del material otra obra), siempre que a) se cite la autoría y la fuente original de su publicación (revista y URL de la obra), b) no se use para fines comerciales y c) se mantengan los mismos términos de la licencia.











