A Spanish dataset for Targeted Sentiment Analysis of political headlines

Autores/as

  • Tomás Alves Salgueiro Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
  • Emilio Recart Zapata Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
  • Damián Furman Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
  • Juan Manuel Perez Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
  • Pablo Nicolás Fernández Larrosa Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina

Resumen

Subjective texts have been especially studied by several works as they can induce certain behaviours in their users. Most work focuses on user-generated texts in social networks, but some other texts also comprise opinions on  certain topics and could influence judgement criteria during political decisions. In this work, we address the task of Targeted Sentiment Analysis for the domain of news headlines, published by the main outlets during the 2019 Argentinean Presidential Elections. For this purpose, we present a polarity dataset of 1,976 headlines mentioning candidates in the 2019 elections at the target level. Preliminary experiments with state-of-the-art classification algorithms based on pre-trained linguistic models suggest that target information is helpful for this task. We make our data and pre-trained models publicly available.

Descargas

Publicado

2022-12-14

Número

Sección

ASAI - Simposio Argentino de Inteligencia Artificial

Cómo citar

Salgueiro, T. A., Recart Zapata, E., Furman, D., Perez, J. M., & Fernández Larrosa, P. N. (2022). A Spanish dataset for Targeted Sentiment Analysis of political headlines. JAIIO, Jornadas Argentinas De Informática, 8(2), 92-97. https://revistas.unlp.edu.ar/JAIIO/article/view/18396