A Spanish dataset for Targeted Sentiment Analysis of political headlines
Resumen
Subjective texts have been especially studied by several works as they can induce certain behaviours in their users. Most work focuses on user-generated texts in social networks, but some other texts also comprise opinions on certain topics and could influence judgement criteria during political decisions. In this work, we address the task of Targeted Sentiment Analysis for the domain of news headlines, published by the main outlets during the 2019 Argentinean Presidential Elections. For this purpose, we present a polarity dataset of 1,976 headlines mentioning candidates in the 2019 elections at the target level. Preliminary experiments with state-of-the-art classification algorithms based on pre-trained linguistic models suggest that target information is helpful for this task. We make our data and pre-trained models publicly available.
Descargas
Publicado
Número
Sección
Licencia
Derechos de autor 2022 Tomás Alves Salgueiro, Emilio Recart Zapata, Damián Furman, Juan Manuel Perez, Pablo Nicolás Fernández Larrosa

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
Acorde a estos términos, el material se puede compartir (copiar y redistribuir en cualquier medio o formato) y adaptar (remezclar, transformar y crear a partir del material otra obra), siempre que a) se cite la autoría y la fuente original de su publicación (revista y URL de la obra), b) no se use para fines comerciales y c) se mantengan los mismos términos de la licencia.











