Producción de combustible sostenible de aviación: estudio tecno-económico basado en simulación de procesos

Autores/as

DOI:

https://doi.org/10.24215/15146774e074

Palabras clave:

etanol a jet-fuel, diseño y simulación de procesos, reducción de emisiones de CO2, biorrefinerías

Resumen

Este estudio analiza la producción de kerosén parafínico sintético a partir de bioetanol derivado de la industria sucroalcoholera del noroeste argentino. El diseño conceptual del proceso se desarrolló utilizando el simulador UniSim® Design v490, lo que permitió definir el diagrama de flujo, optimizar las condiciones operativas y evaluar la viabilidad técnica mediante indicadores clave. Se alcanzó un rendimiento global de 0,59 kg de hidrocarburos por kilogramo de etanol, con una conversión del 97,1% en la etapa de deshidratación. La integración energética redujo el consumo de servicios auxiliares en un 34%. El análisis económico indicó una viabilidad financiera con un valor actual neto de 19 millones de dólares y una tasa interna de retorno del 14%. Este enfoque propone diversificar la cartera de productos de la biorrefinería de caña de azúcar, aprovechando recursos regionales y destacando el papel de la simulación computacional en el diseño de procesos químicos sostenibles.

Descargas

Citas

Prussi, M., Lee, U., Wang, M., Malina, R., Valin, H., Taheripour, F., ... & Hileman, J. I. (2021). CORSIA: The first internationally adopted approach to calculate life-cycle GHG emissions for aviation fuels. Renewable and Sustainable Energy Reviews, 150, 111398. https://doi.org/10.1016/j.rser.2021.111398.

International Aviation Transport Association (IATA): Annual Review 2024 (2024). https://www.iata.org/contentassets/c81222d96c9a4e0bb4ff6ced0126f0bb/iata-annual-review-2024.pdf. Consultada el 30 de diciembre de 2024.

Wang, X., Guo, L., Lv, J., Li, M., Huang, S., Wang, Y., & Ma, X. (2023). Process design, modeling and life cycle analysis of energy consumption and GHG emission for jet fuel production from bioethanol in China. Journal of Cleaner Production, 389, 136027. https://doi.org/10.1016/j.jclepro.2023.136027.

Holladay, J., Abdullah, Z., Heyne, J. (2020). Sustainable Aviation Fuel: Review of Technical Pathways. U.S. Department of Energy. https://doi.org/10.2172/1660415.

Geleynse, S., Brandt, K., Garcia‐Perez, M., Wolcott, M., & Zhang, X. (2018). The alcohol‐to‐jet conversion pathway for drop‐in biofuels: techno‐economic evaluation. ChemSusChem, 11(21), 3728-3741. https://doi.org/0.1002/cssc.201802487.

Unisim Design Suite®—Software for Process Design and Simulation. Honeywell International Inc.: https://www.honeywellprocess.com. Consultada el 30 de diciembre de 2024.

Romero-Izquierdo, A. G., Gómez-Castro, F. I., Gutiérrez-Antonio, C., Hernández, S., & Errico, M. (2021). Intensification of the alcohol-to-jet process to produce renewable aviation fuel. Chemical Engineering and Processing-Process Intensification, 160, 108270. https://doi.org/10.1016/j.cep.2020.108270.

Kagyrmanova, A. P., Chumachenko, V. A., Korotkikh, V. N., Kashkin, V. N., & Noskov, A. S. (2011). Catalytic dehydration of bioethanol to ethylene: Pilot-scale studies and process simulation. Chemical Engineering Journal, 176, 188-194. https://doi.org/10.1016/j.cej.2011.06.049.

Fan, D., Dai, D. J., & Wu, H. S. (2012). Ethylene formation by catalytic dehydration of ethanol with industrial considerations. Materials, 6(1), 101-115. https://doi.org/10.3390/ma6010101.

Maia, J. G. S. S., Demuner, R. B., Secchi, A. R., Melo, P. A., Carmo, R. W. D., & Gusmão, G. S. (2018). Process modeling and simulation of an industrial-scale plant for green ethylene production. Industrial & Engineering Chemistry Research, 57(18), 6401-6416. https://doi.org/10.1021/acs.iecr.8b00776.

Zarpelón, F. (2023). Destilación de etanol. Ferullo Burke, Tucumán. ISBN 978-631-00-0325-2.

Woo, Y., Shin, M., Suh, Y. W., & Park, M. J.: Kinetic Modeling of Ethylene Oligomerization to High-Chain-Length Olefins Over Al-SBA-15-Supported Ni Catalyst with LiAlH 4 Co-catalyst. Reaction Kinetics, Mechanisms and Catalysis 132, 499-511, (2021). https://doi.org/10.1007/s11144-021-01939-4.

Finiels, A., Fajula, F., & Hulea, V.: Nickel-based solid catalysts for ethylene oligomerization – a review. Catal. Sci. Technol. 4, (2014). https://doi.org/10.1039/C4CY00305E.

Heveling, J., Nicolaides, C. P., & Scurrell, M. S.: Catalysts and conditions for the highly efficient, selective and stable heterogeneous oligomerisation of ethylene. Applied Catalysis A: General 173(1), 1-9, (1998). https://doi.org/10.1016/S0926-860X(98)00147-1.

Turton, R., Bailie, R. C., Whiting, W. B., Shaeiwitz, J. A., & Bhattacharyya D. (2018). Analysis, synthesis and design of chemical processes. Prentice Hall. ISBN: 9780132618120.

Fuchs, C., Arnold, U., & Sauer, J. (2023). (Co‐) Oligomerization of Olefins to Hydrocarbon Fuels: Influence of Feed Composition and Pressure. Chemie Ingenieur Technik, 95(5), 651-657. https://doi.org/10.1002/cite.202200209

Tan, E. C., Snowden‐Swan, L. J., Talmadge, M., Dutta, A., Jones, S., Ramasamy, K. K., ... & Zhang, Y. (2017). Comparative techno‐economic analysis and process design for indirect liquefaction pathways to distillate‐range fuels via biomass‐derived oxygenated intermediates upgrading. Biofuels, Bioproducts and Biorefining, 11(1), 41-66. https://doi.org/10.1002/bbb.1710

Cuezzo, A. M., Araujo, P. Z., Wheeler, J., & Mele, F. D. (2023). Modeling and environmental implications of methanol production from biogenic CO2 in the sugarcane industry. Journal of CO2 Utilization, 67, 102301. https://doi.org/10.1016/j.jcou.2022.102301.

Linnhoff, B., & Townsend, B. W. (1982). Designing total energy systems. Chem. Eng. Prog.;(United States), 78(7).

Dimian, A. C., Bildea, C. S., & Kiss, A. A. (2019). Applications in design and simulation of sustainable chemical processes. Elsevier.

Peters, M. S., Timmerhaus, K. D., & West, R. E. (1991). Cost estimation. Plant design and economics for chemical engineers, 150-215.

International Aviation Transport Association. (2024). CORSIA Handbook. https://www.iata.org/contentassets/fb745460050c48089597a3ef1b9fe7a8/corsia-Handbook.pdf

Descargas

Publicado

2025-04-01