Contribution to the study and the design of reinforcement functions
Abstract
The underlying concept in Reinforcement Learning is as simple as it is attractive: to learn by trial and error from the interaction with the environment. This approach allows us to deal with problems where a learning technique searches to improve the performance of the agent (the learner) over time. Reinforcement Learning groups a set of such techniques, and it uses a performance measure based on two types of signals given by a Critic or Reinforcement Function: penalty and reward.
Downloads
Published
Issue
Section
License
Copyright (c) 2000 Juan Miguel Santos

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Those authors who have publications with this journal, agree with the following terms:
a. Authors will retain its copyright and will ensure the rights of first publication of its work to the journal, which will be at the same time subject to the Creative Commons Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0) allowing third parties to share the work as long as the author and the first publication on this journal is indicated.
b. Authors may elect other non-exclusive license agreements of the distribution of the published work (for example: locate it on an institutional telematics file or publish it on an monographic volume) as long as the first publication on this journal is indicated,
c. Authors are allowed and suggested to disseminate its work through the internet (for example: in institutional telematics files or in their website) before and during the submission process, which could produce interesting exchanges and increase the references of the published work. (see The effect of open Access)















