A Hierarchical Two-tier Approach to Hyper-parameter Optimization in Reinforcement Learning
Keywords:
reinforcement learning, hyper-parameter optimization, Bayesian optimization, Bayesian optimization of combinatorial struc- tures (BOCS)Abstract
Optimization of hyper-parameters in real-world applications of reinforcement learning (RL) is a key issue, because their settings determine how fast the agent will learn its policy by interacting with its environment due to the information content of data gathered. In this work, an approach that uses Bayesian optimization to perform an autonomous two-tier optimization of both representation decisions and algorithm hyper-parameters is proposed: first, categorical / structural RL hyper-parameters are taken as binary variables and optimized with an acquisition function tailored for such type of variables. Then, at a lower level of abstraction, solution-level hyper-parameters are optimized by resorting to the expected improvement acquisition function, whereas the categorical hyper-parameters found in the optimization at the upper level of abstraction are fixed. This two-tier approach is validated with a tabular and neural network setting of the value function, in a classic simulated control task. Results obtained are promising and open the way for more user-independent applications of reinforcement learning.
Downloads
Published
Issue
Section
License
Copyright (c) 2020 Juan Cruz Barsce, Jorge Palombarini, Ernesto Martinez

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Those authors who have publications with this journal, agree with the following terms:
a. Authors will retain its copyright and will ensure the rights of first publication of its work to the journal, which will be at the same time subject to the Creative Commons Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0) allowing third parties to share the work as long as the author and the first publication on this journal is indicated.
b. Authors may elect other non-exclusive license agreements of the distribution of the published work (for example: locate it on an institutional telematics file or publish it on an monographic volume) as long as the first publication on this journal is indicated,
c. Authors are allowed and suggested to disseminate its work through the internet (for example: in institutional telematics files or in their website) before and during the submission process, which could produce interesting exchanges and increase the references of the published work. (see The effect of open Access)















