Facial Expression Recognition using lightweight deep convolutional networks with Label Distribution Learning on Action Units labels space
DOI:
https://doi.org/10.24215/15146774e031Keywords:
Facial expression recognition, Label distribution learning, Lightweight, Convolutional Neuronal Network, Action unit recognitionAbstract
Nowadays, the search for ‘lightweight’ solutions that achieve comparable results to those of heavy deep learning models has received increasing attention due to a feasible implementation on mobile devices. One of the areas that might benefit from this approach is the task of Facial Expression Recognition (FER). Considering the fact that datasets usually come with categoric labeling but most emotions occur as combinations, mixtures, or compounds of the basic emotions, we make use of label distribution learning (LDL) as a training strategy. In this article we deal with the FER problem using lightweight neuronal networks and LDL. We further assume that facial images should have similar emotion distributions to their neighbors when the right auxiliary task is considered, like the Action Unit Recognition problem. This neighbors’ distribution information is captured in the loss function to help the LDL training process. Specifically, we conduct an analysis of EfficientFace, a state-of-the-art ligthweight CNN and we analyze the impact of using different approaches to LDL on a variety of in-the-wild datasets: RAF-DB, CAER-S, FER+ and AffectNet.
Downloads
Published
Issue
Section
License
Copyright (c) 2023 Nicolas Mastropasqua, Daniel Acevedo

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Those authors who have publications with this journal, agree with the following terms:
a. Authors will retain its copyright and will ensure the rights of first publication of its work to the journal, which will be at the same time subject to the Creative Commons Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0) allowing third parties to share the work as long as the author and the first publication on this journal is indicated.
b. Authors may elect other non-exclusive license agreements of the distribution of the published work (for example: locate it on an institutional telematics file or publish it on an monographic volume) as long as the first publication on this journal is indicated,
c. Authors are allowed and suggested to disseminate its work through the internet (for example: in institutional telematics files or in their website) before and during the submission process, which could produce interesting exchanges and increase the references of the published work. (see The effect of open Access)















