Use of satellite vegetation indices to predict yield levels of Vicia villosa Roth
DOI:
https://doi.org/10.24215/15146774e076Keywords:
model, prediction, yield, legumeAbstract
In this paper, satellite images, machine learning algorithms and field measurements are combined to analyze the possibility of generating a model that predicts the yield of the legume Vicia villosa Roth before harvest. In a previous study, satellite information from different dates throughout the complete phenological cycle of the legume cultivated in several plots of the Guaminí district (Buenos Aires) was used and a close relationship was found between yield level and the time series of vegetation indices. Based on these results, the possibility of predicting yield is evaluated considering nine dates of the 2021-2022 campaign between sowing and prior to harvest. They are associated in different ways, determining their impact on the accuracy of the trained model.
Results show that legume yield can be adequately classifed with remote monitoring of five dates. To have a prediction model could help in in-situ decisions by optimizing the use given to the crop (direct grazing, forage or seed production) based on its expected profit.
References
Hatfield J. L. y Prueger J. H.: Value of using different vegetative indices to quantify agricultural crop characteristics at dierent growth stages under varying management practices. Remote Sensing 2(2), 562-578 (2010).
Segarra J., Buchaillot M. L., Araus J. L. y Kefauver S. C.: Remote sensing for precision agriculture: Sentinel-2 improved features and applications. Agronomy 10(5), (2020).
Patil P., Biradar C., Atassi L., Moussadek R., Kharrat M., Singh M., Andaloussi F. y Agrawal S. K.: Mapping and monitoring of food legumes and dryland cereal production systems. En: Anales del Fourth International Conference on Agro-Geoinformatics (Agro-geoinformatics), 407-413, Estambul, Turquía (2015).
Lu S., Lu X., Zhao W., Liu Y., Wang Z., Omasa K.: Comparing vegetation indices for remote chlorophyll measurement of white poplar and Chinese elm leaves with different adaxial and abaxial surfaces. Journal of Experimental Botany 6(18), 5625-5637 (2015).
Larrañaga Urien A.: Clasificación de cultivos a partir de observaciones de teledetección radar. Aplicación a zonas de secano y regadío de Navarra. Tesis Doctoral. En: Programa de Doctorado en Ingeniería y Arquitectura. Ediciones Universidad Pública de Navarra, España (2016).
Pasqualotto Vicente N., Delegido J., Van Wittenberghe S., Rinaldi M. y Moreno J.: Estimación de LAI verde de diversos cultivos mediante el nuevo índice SeLI para Sentinel-2. En: Anales del XVIII Simposio Internacional de la Sociedad Latinoamericana de Percepción Remota y Sistemas de Información Espacial (SELPER), La Habana, Cuba (2018).
Marini F.: Discriminación de trigo y cebada empleando imágenes satelitales ópticas y radar. Estudio de caso: partido de Coronel Rosales (Argentina). Investigaciones Geográficas UNAM, 104 (2021).
Tenreiro T. R., García-Vila M., Gómez J. A., Jiménez-Berni J. A. y Fereres E.: Using NDVI for the assessment of canopy cover in agricultural crops within modelling research. Computers and Electronics in Agriculture 182, art. 106038 (2021).
Gumma M. K., Tummala K., Dixit S., Collivignarelli F., Holecz F., Kolli R. N. y Whitbread A. M.: Crop type identication and spatial mapping using sentinel-2 satellite data with focus on eld-level information. Geocarto International, 37(7), 1833-1849 (2022).
Paredes Gómez V., del Blanco Medina V., Gutiérrez García A. y Nafría García D. A.: Seguimiento y evaluación de la capacidad de discriminación de cultivos herbáceos en regadío a partir de imágenes de satélite en el periodo 2016-2018. Tierras de Castilla y León: Agricultura 282, 36-43 (2020).
Breiman L.: Random Forests. Machine Learning 45, 5-32 (2001).
Regalado Galván J. A., D'Amico M. B. y Calandrini G. L.: Análisis temporal de índices de vegetación satelitales en Vicia villosa Roth. En: Anales del XXVIII Congreso Argentino de Control Automático, 97-102, Buenos Aires, Argentina (2023).
D'Amico M. B., Marini F., Calandrini G. L., Renzi J. P. y Chantre G. R.: Relación entre los índices de vegetación satelitales y el nivel de rinde de la leguminosa Vicia villosa Roth. En: Anales de la XX Reunión de Trabajo en Procesamiento de la Información y Control (RPIC2023), Oberá, Argentina (2023).
Renzi J. P., Chantre G. R., Smýkal P., Presotto A. D., Zubiaga L., Garayalde A. F. y Cantamutto M. A.: Diversity of naturalized hairy vetch (vicia villosa Roth) populations in central Argentina as a source of potential adaptive traits for breeding. Frontiers in Plant Science 11, art. 189 (2020).
Renzi J. P.: Caracterización Agroecológica de Poblaciones Naturales de Vicia villosa Roth (FABACEAE) de Argentina. Tesis de Doctorado en Agronomía, Universidad Nacional del Sur (2020).
Renzi J. P., Chantre G. R., González-Andújar J. L. y Cantamutto M. A.: Development and validation of a simulation model for hairy vetch (Vicia villosa Roth) self-regeneration under different crop rotations. Field Crops Research 235, 79-86 (2019).
Marini M. F.: Discriminación de cultivos de distinto desarrollo utilizando imágenes satelitales MODIS. GeoFocus (Informes y aplicaciones), 13(1) 48-60 (2013)
Datos abiertos del Ministerio de Agricultura, Ganadería y Pesca de la Nación. http://www.magyp.gob.ar/datosabiertos/. Accedido en abril de 2024.
Rouse J. W., Haas R. H., Schell J. A., Deerino D. W.y Harlan J. C.: Monitoring the vernal advancement of retrogradation of natural vegetation. Reporte final, NASA/OSFC, 371 (1974).
Justice C. O., Vermote E., Townshend J. R., Defries R., Roy D. P., Hall D. K. y Lucht W.: The Moderate Resolution Spectroradiometer (MODIS): Land remote sensing for global change research. IEEE Transactions on Geosciences and Remote Sensing 36(4), 1228-1249 (1998).
Huang H., Roy D .P., Boschetti B., Zhang H. K., Yan L., Kumar S. S., Gomez-Dans J. y Li J.: Separability analysis of Sentinel-2A multi-spectral instrument (MSI) data for burned area discrimination. Remote Sensing 8(10), 873 (2016).
Gilabert M. A., González-Piqueras J. y García-Haro F. J.: Acerca de los índices de vegetación. Revista de Teledetección 8 (1997).
Daughtry C. S. T., Gallo K. P., Goward S. N., Prince S. D. y Kustas W. P.: Spectral estimates of absorbed radiation and phytomass production in corn and soybean canopies. Remote Sensing Environment 39(2), 141-152 (1992).
Ovando G., de la Casa A., Díaz G., Díaz P., Bressanini L. y Miranda C.: Desempeño de diferentes índices de vegetación de Sentinel-2A para estimar el rendimiento de soja en agricultura de precisión. AgriScientia (38), 1-12 (2021).
Jensen J. R.: Introductory Digital Image Processing. Prentice-Hall, Nueva Jersey, Estados Unidos (1986).
Bishop Y., Fienberg S. y Holland P.: Discrete Multivariate Analysis. Theory and Practice. MIT Press, Cambridge, Inglaterra (1975).
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Fabián Marini, María Belén D'Amico, Guillermo Luis Calandrini, Juan Pablo Renzi, Guillermo Rubén Chantre

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Those authors who have publications with this journal, agree with the following terms:
a. Authors will retain its copyright and will ensure the rights of first publication of its work to the journal, which will be at the same time subject to the Creative Commons Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0) allowing third parties to share the work as long as the author and the first publication on this journal is indicated.
b. Authors may elect other non-exclusive license agreements of the distribution of the published work (for example: locate it on an institutional telematics file or publish it on an monographic volume) as long as the first publication on this journal is indicated,
c. Authors are allowed and suggested to disseminate its work through the internet (for example: in institutional telematics files or in their website) before and during the submission process, which could produce interesting exchanges and increase the references of the published work. (see The effect of open Access)















