Artificial Intelligence Applied to Image Forensics: Advances in the Forensic Field

Authors

DOI:

https://doi.org/10.24215/15146774e080

Keywords:

digital forensic analysis, forensic examinations, image processing, neural networks

Abstract

Forensic analysis plays a crucial role in legal proceedings involving medical and health-related matters. Its significance lies in providing an impartial assessment grounded in scientific medical knowledge. Additionally, forensic evaluations contribute to damage assessment, accountability assignment, and interpretation of medical evidence.

The Forensic Medical Corps of the Judicial Branch of Neuqu´en has compiled a substantial amount of data on judicial assessments conducted, which could be utilized to develop Intelligent Systems that assist professionals in their decision-making processes.

Consequently, there is a need to understand, process, and manipulate both images and the accompanying medical-legal reports. This work presents the results of the development of an Intelligent System for image processing, capable of determining the presence of ecchymosis. To achieve this, a convolutional neural network was configured and trained using a publicly available dataset. Tests were conducted to
evaluate the network’s performance with both black-and-white and color images, considering that the computational volume involved in training for both types of images is a critical factor to be addressed.

Moreover, two approaches for data extraction from forensic reports are presented, which can be either printed or handwritten.

Additionally, a mobile application was developed that allows users to access the trained model and determine, based on an image, whether it corresponds to ecchymosis, indicating the associated reliability percentage of the result.

References

Organización Mundial de la Salud, “Violencia contra la mujer,” 2021. https://www.who.int/es/news-room/fact-sheets/detail/violence-against-women. Accedido en Abril 2024.

The World Bank, “Gender Data Portal - Violence,” 2024. https://genderdata.worldbank.org/topics/violence. Accedido en Abril 2024.

The World Bank, “Gender Data Portal - Argentina,” 2024. https://genderdata.worldbank.org/countries/argentina. Accedido en Abril 2024.

E. Arribas and Z. Fortuny, Guía práctica de lesiones + acceso web: Valoración clínica y sus implicaciones legales. Elsevier Health Sciences Spain, 2013.

M. Asirdizer, E. Z. Besik, and E. Kartal, “Non-traumatic ecchymoses: A literature review from a medico-legal perspective,” Journal of Forensic and Legal Medicine, vol. 95, p. 102490, 2023.

N. Epperla, J. J. Mazza, and S. H. Yale, “A review of clinical signs related to ecchymosis,” WMJ, vol. 114, no. 2, pp. 61–5, 2015.

Office of the United Nations High Commissioner for Human Rights, “Protocolo de Minnesota sobre la Investigación de Muertes Potencialmente Ilícitas,” 2016. https://www.ohchr.org/sites/default/files/Documents/Publications/MinnesotaProtocol_SP.pdf. Accedido Abril 2024.

Office of the United Nations High Commissioner for Human Rights, “Istanbul Protocol: Manual on the Effective Investigation and Documentation of Torture and Other Cruel, Inhuman or Degrading Treatment or Punishment,” 2022.

https://www.ohchr.org/sites/default/files/documents/publications/2022-06-29/Istanbul-Protocol_Rev2_EN.pdf. Accedido Abril 2024.

Secretaria de Seguridad y Política Criminal. Ministerio de Seguridad, “Actuación para la Investigación Científica del Lugar del Hecho,” 2021. https://www.conicet.gov.ar/wp-content/uploads/anexo_6486329_1.pdf. Accedido Abril 2024.

D. Riaño, S. Wilk, and A. Ten Teije, Artificial Intelligence in Medicine: 17th Conference on Artificial Intelligence in Medicine, AIME 2019, Poznan, Poland, June 26–29, 2019, Proceedings, vol. 11526. Springer, 2019.

A. Zavrsnik, “Criminal justice, artificial intelligence systems, and human rights,” vol. 20, no. 4, pp. 567–583, 2020.

L. Tournois, V. Trousset, D. Hatsch, T. Delabarde, B. Ludes, and T. Lefevre, “Artificial intelligence in the practice of forensic medicine: a scoping review,” International Journal of Legal Medicine, vol. 138, pp. 1023––1037, 2024.

J. Tirado and D. Mauricio, “Bruise dating using deep learning,” Journal of forensic sciences, vol. 66, no. 1, pp. 336–346, 2021.

G. Llajaruna, D. Mauricio, and L. Gutiérrez, “Datación de equimosis en el peritaje médico legal peruano mediante redes neuronales artificiales y procesamiento de imágenes. congreso latino-iberoamericano de investigación operativa,” in Simposio Brasileiro de Pesquisa Operacional, 2012.

N. Alanbar, “bruise dataset.” https://universe.roboflow.com/nabeel-alanbar-2vn5y/bruise-x5paj, may 2023. visited on 2024-04-12.

D. Sarvamangala and R. V. Kulkarni, “Convolutional neural networks in medical image understanding: a survey,” Evolutionary intelligence, vol. 15, no. 1, pp. 1–22, 2022.

H. Yu, L. T. Yang, Q. Zhang, D. Armstrong, and M. J. Deen, “Convolutional neural networks for medical image analysis: State-of-the-art, comparisons, improvement and perspectives,” Neurocomputing, vol. 444, pp. 92–110, 2021.

F. Ciompi, B. de Hoop, S. J. van Riel, K. Chung, E. T. Scholten, M. Oudkerk, P. A. de Jong, M. Prokop, and B. van Ginneken, “Automatic classification of pulmonary peri-fissural nodules in computed tomography using an ensemble of 2d views and a convolutional neural network out-of-the-box,” Medical Image Analysis, vol. 26, no. 1, pp. 195–202, 2015.

M. A. Abdou, “Literature review: Efficient deep neural networks techniques for medical image analysis,” Neural Computing and Applications, vol. 34, no. 8, pp. 5791–5812, 2022.

F. A. Mohammed, K. K. Tune, B. G. Assefa, M. Jett, and S. Muhie, “Medical image classifications using convolutional neural networks: A survey of current methods and statistical modeling of the literature,” Machine Learning and Knowledge Extraction, vol. 6, no. 1, pp. 699–735, 2024.

R. Kumar, P. Kumbharkar, S. Vanam, and S. Sharma, “Medical images classification using deep learning: a survey,” Multimedia Tools and Applications, vol. 83, no. 7, pp. 19683–19728, 2024.

Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521, no. 7553, pp. 436–444, 2015.

Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied to document recognition,” Proceedings of the IEEE, vol. 86, no. 11, pp. 2278–2324, 1998.

A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep convolutional neural networks,” Advances in neural information processing systems, vol. 25, 2012.

M. A. HASAN, T. Bhargav, V. SANDEEP, V. S. REDDY, and R. AJAY, “Image classification using convolutional neural networks,” International Journal of Mechanical Engineering Research and Technology, vol. 16, no. 2, pp. 173–181, 2024.

S. Bandal and S. Rath, “Unveiling digital secrets: An image text vision app for enhanced digital forensics investigations,” in 2024 12th International Symposium on Digital Forensics and Security (ISDFS), pp. 1–6, IEEE, 2024.

OPENAI, “Introducing ChatGPT .” https://openai.com/index/chatgpt/. Accedido Enero 2025.

Microsoft, “Copilot” https://copilot.microsoft.com/. Accedido Enero 2025.

M. Scanlon, B. Nikkel, and Z. Geradts, “Digital forensic investigation in the age of ChatGPT,” Forensic Science International: Digital Investigation, vol. 44, p. 301543, 03 2023.

M. Scanlon, F. Breitinger, C. Hargreaves, J.-N. Hilgert, and J. Sheppard, “Chatgpt for digital forensic investigation: The good, the bad, and the unknown,” Forensic Science International: Digital Investigation, vol. 46, p. 301609, 2023.

R. J. Dinis-Oliveira and R. M. S. Azevedo, “Chatgpt in forensic sciences: a new pandora’s box with advantages and challenges to pay attention,” Forensic Sciences Research, vol. 8, pp. 275–279, 11 2023.

B. C. K. Ly, E. B. Dyer, J. L. Feig, A. L. Chien, and S. Del Bino, “Research techniques made simple: cutaneous colorimetry: a reliable technique for objective skin color measurement,” Journal of Investigative Dermatology, vol. 140, no. 1, pp. 3–12, 2020.

L. Pereda and G. Marilú, “Automatización de la datación de equimosis en el peritaje médico legal peruano mediante redes neuronales artificiales y procesamiento de imágenes,” Master’s thesis, Universidad Nacional Mayor de San Marcos. Programa Cybertesis Perú, 2011.

Latinobarómetro, “Corporación latinobarómetro. informe 2011.” http://www.infoamerica.org/primera/lb_2011.pdf, 2011.

Statista, “Distribución porcentual de la población en países seleccionados de américa latina en 2020 y 2021, por grupo étnico.” https://es.statista.com/estadisticas/1417603/distribucion-de-grupos-etnicos-en-america-latina-en-paises, 2021. visited on 2025-01-03.

P. De Grande and A. Salvia, “Aportes para la medición de la desigualdad racialista en la argentina,” Estudios sociológicos, vol. 39, no. 117, pp. 741–771, 2021.

R. Espino and M. M. Franz, “Latino phenotypic discrimination revisited: The impact of skin color on occupational status,” Social Science Quarterly, vol. 83, no. 2, pp. 612–623, 2002.

T. Golash-Boza and W. Darity Jr, “Latino racial choices: the effects of skin colour and discrimination on latinos’ and latinas’ racial self-identifications,” Ethnic and Racial Studies, vol. 31, no. 5, pp. 899–934, 2008.

J. Hersch, “Profiling the new immigrant worker: The effects of skin color and height,” Journal of Labor Economics, vol. 26, no. 2, pp. 345–386, 2008.

K. M. Perreira and E. E. Telles, “The color of health: skin color, ethnoracial classification, and discrimination in the health of latin americans,” Social science & medicine, vol. 116, pp. 241–250, 2014.

E. E. Telles, Pigmentocracies: Ethnicity, race, and color in Latin America. UNC Press Books, 2014.

I. P. G. Santiago, M. F. M. Suarez, M. F. Ortiz, and M. S. Rivera26, “Color y desigualdad: Estudio exploratorio sobre el uso de escalas de color de piel para conocer la vulnerabilidad y percepción del discrimen entre latinos y latinas,” Revista Umbral, p. 33, 2018.

R. Shamey, Encyclopedia of color science and technology. Springer, 2023.

P. Dabas, B. Nayak, H. Khajuria, S. Jain, and K. Saraswathy, “Analysis of skin color variation using cielab index: An empirical study from delhi, india,” Journal of Indian Academy of Forensic Medicine, vol. 46, no. 1, pp. 76–80, 2024.

A. Kaur and B. Kranthi, “Comparison between ycbcr color space and cielab color space for skin color segmentation,” International Journal of Applied Information Systems, vol. 3, no. 4, pp. 30–33, 2012.

L. Taylor and G. Nitschke, “Improving deep learning with generic data augmentation,” in 2018 IEEE symposium series on computational intelligence (SSCI), pp. 1542–1547, IEEE, 2018.

I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial networks,” Communications of the ACM, vol. 63, no. 11, pp. 139–144, 2020.

H. Narayanan and S. Ghanta, “A study of data augmentation techniques to overcome data scarcity in wound classification using deep learning,” arXiv preprint arXiv:2411.02456, 2024.

Downloads

Published

2025-06-01

How to Cite

Roger, S., Latorre Rosales, M., Braun, G., Cecchi, L., Villarroel, S., Campos Fuentes, C., & Jerez, G. (2025). Artificial Intelligence Applied to Image Forensics: Advances in the Forensic Field. SADIO Electronic Journal of Informatics and Operations Research, 24(2), e080. https://doi.org/10.24215/15146774e080