On Artificial Gene Regulatory Networks
Keywords:
Gene Regulatory Networks, Artificial GRNs, bioinformaticsAbstract
Gene regulatory networks (GRNs) represent dependencies between genes and their products during protein synthesis at the molecular level. At the present there exist many inference methods that infer GRNs form observed data. However, gene expression data sets have in general considerable noise that make understanding and learning even simple regulatory patterns difficult. Also, there is no well-known method to test the accuracy of inferred GRNs. Given these drawbacks, characterizing the effectiveness of different techniques to uncover gene networks remains a challenge. The development of artificial GRNs with known biological features of expression complexity, diversity and interconnectivities provides a more controlled means of investigating the appropriateness of those techniques. In this work we introduce this problem in terms of machine learning and present a review of the main formalisms that have been used.
Downloads
Published
Issue
Section
License
Copyright (c) 2009 Jessica A. Carballido, Ignacio Ponzoni

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Those authors who have publications with this journal, agree with the following terms:
a. Authors will retain its copyright and will ensure the rights of first publication of its work to the journal, which will be at the same time subject to the Creative Commons Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0) allowing third parties to share the work as long as the author and the first publication on this journal is indicated.
b. Authors may elect other non-exclusive license agreements of the distribution of the published work (for example: locate it on an institutional telematics file or publish it on an monographic volume) as long as the first publication on this journal is indicated,
c. Authors are allowed and suggested to disseminate its work through the internet (for example: in institutional telematics files or in their website) before and during the submission process, which could produce interesting exchanges and increase the references of the published work. (see The effect of open Access)















