Deep learning models for predicting future sedentary behavior
Keywords:
deep learning, machine learning, sedentary behaviorAbstract
It is well known that sedentary behavior has negative consequences for health. Therefore, encouraging individuals to avoid this type of behavior can help to reduce different risk indicators. In this work, different deep learning architectures were evaluated to predict the future sedentary behavior of an individual from the captured records of different sensors available on mobile devices. Users with different levels of energy expenditure were analyzed, and encouraging results were obtained that demonstrate the efficiency of the proposed architectures.
Downloads
Published
Issue
Section
License
Copyright (c) 2020 Martín Santillán Cooper, Marcelo Armentano

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Those authors who have publications with this journal, agree with the following terms:
a. Authors will retain its copyright and will ensure the rights of first publication of its work to the journal, which will be at the same time subject to the Creative Commons Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0) allowing third parties to share the work as long as the author and the first publication on this journal is indicated.
b. Authors may elect other non-exclusive license agreements of the distribution of the published work (for example: locate it on an institutional telematics file or publish it on an monographic volume) as long as the first publication on this journal is indicated,
c. Authors are allowed and suggested to disseminate its work through the internet (for example: in institutional telematics files or in their website) before and during the submission process, which could produce interesting exchanges and increase the references of the published work. (see The effect of open Access)















