Study of different lightning parametrization and their evaluation with GLM observations

Authors

  • Federico Cutraro Servicio Meteorológico Nacional, Argentina
  • María Eugenia Dillon Servicio Meteorológico Nacional, Argentina
  • Juan Jose Ruiz Centro de Investigaciones del Mar y la Atmósfera, Argentina

DOI:

https://doi.org/10.24215/1850468Xe036

Keywords:

parametrization, lightning, GLM, WRF

Abstract

A lightning forecast is vital for many activities and people's safety. This forecast is not simple because it is a process that occurs at scales that numerical models do not resolve. For this reason, the present work evaluates the performance of five parameterizations applied to the WRF model with convection allowed. Deterministic and ensemble forecasts from the Data Assimilation and Numerical Weather Forecasting System of the Argentinian National Meteorological Service (SAP.SMN) and GLM observations from November 2022 to April 2023 were used to generate and evaluate the relationships. All parameterizations were found to correctly represent different characteristics of the observed lightning during the analyzed period, while the one based on the ice content vertically integrated is which provides the best results. A sensitivity to the parameterization of the microphysics used in the model was also observed, but not with the parameterization of the boundary layer.

References

Allen, B. J., E. R. Mansell, D. C. Dowell, y W. Deierling, 2016: Assimilation of Pseudo-GLM Data Using the Ensemble Kalman Filter. Mon. Wea. Rev., 144, 3465–3486, https://doi.org/10.1175/MWR-D-16-0117.1

Ashley, W. S., y C. W. Gilson, 2009: A Reassessment of U.S. Lightning Mortality. Bull. Amer. Meteor. Soc., 90, 1501–1518, https://doi.org/10.1175/2009BAMS2765.1

Bertone, F., Nicora, G., y Vidal, L., 2022: Thunderstorm days over Argentina: Integration between human observations of thunder and the world wide lightning location network lightning data, International Journal of Climatology, 42(16), 9072-9087, https://doi.org/10.1002/joc.7800

Bruning, E. C., Tillier, C. E., Edgington, S. F., Rudlosky, S. D., Zajic, J., Gravelle, C., Foster, M., Calhoun, K., Campbell, A., Stano, G., Schultz, C., y Meyer, T. C., 2019: Meteorological imagery for the geostationary lightning mapper, Journal of Geophysical Research: Atmospheres, 124(24), 14285-14309, https://doi.org/10.1029/2019JD030874

Chen, S.-H. y W.-Y. Sun, 2002: A one-dimensional time dependent cloud model. J. Meteor. Soc. Japan., 80(1), 99–118, https://doi.org/10.2151/jmsj.80.99

Cintineo, J. L., M. J. Pavolonis, y J. M. Sieglaff, 2022: ProbSevere LightningCast: A Deep-Learning Model for Satellite-Based Lightning Nowcasting. Wea. Forecasting, 37, 1239–1257, https://doi.org/10.1175/WAF-D-22-0019.1

Combarnous, P., Erdmann, F., Caumont, O., Defer, É., y Martet, M., 2022: A satellite lightning observation operator for storm-scale numerical weather prediction. Natural Hazards and Earth System Sciences, 22(9), 2943-2962, https://doi.org/10.5194/nhess-22-2943-2022

Federico, S., Torcasio, R.C., Puca, S., Vulpiani, G., Comellas Prat, A., Dietrich, S., Avolio, E., 2021: Impact of Radar Reflectivity and Lightning Data Assimilation on the Rainfall Forecast and Predictability of a Summer Convective Thunderstorm in Southern Italy. Atmosphere, 12, 958. https://doi.org/10.3390/atmos12080958

Fierro, A. O., Mansell, E. R., MacGorman, D. R., y Ziegler, C. L., 2013: The implementation of an explicit charging and discharge lightning scheme within the WRF-ARW model:Benchmark simulations of a continental squall line, a tropical cyclone, and a winter storm. Monthly Weather Review, 141(7), 2390-2415, https://doi.org/10.1175/MWR-D-12-00278.1

Goodman, S, Blakeslee, R., Koshak, W., Mach, D., Bailey, J., Buechler, D., Carey, L., Schultz, C., Bateman, M., McCaul, E. y Stano, G., 2013: The GOES-R Geostationary Lightning Mapper (GLM). Atmos. Res., 125–126, 34–49, https://doi.org/10.1016/j.atmosres.2013.01.006.

Hong, S. Y., y Lim, J. O. J., 2006: The WRF single-moment 6-class microphysics scheme (WSM6). Asia-Pacific Journal of Atmospheric Sciences, 42(2), 129-151.

Hong, Song–You, Yign Noh y Jimy Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 2318–2341. https://doi.org/10.1175/MWR3199.1

Iacono, M. J., J. S. Delamere, E. J. Mlawer, M. W. Shephard, S. A. Clough, y W. D. Collins, 2008: Radiative forcing by long–lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res., 113, D13103. https://doi.org/10.1029/2008JD009944

Janjic, Zavisa I., 1994: The Step–Mountain Eta Coordinate Model: Further developments of the convection, viscous sublayer, and turbulence closure schemes. Mon. Wea. Rev., 122, 927–945. https://doi.org/10.1175/1520-0493(1994)122%3c0927:TSMECM%3e2.0.CO;2

Mach, D. M., Christian, H. J., Blakeslee, R. J., Boccippio, D. J., Goodman, S. J., y Boeck, W. L., 2007: Performance assessment of the optical transient detector and lightning imaging sensor. Journal of Geophysical Research: Atmospheres, 112(D9), https://doi.org/10.1029/2006JD007787

Mansell, E. R., MacGorman, D. R., Ziegler, C. L., y Straka, J. M., 2002: Simulated three-dimensional branched lightning in a numerical thunderstorm model, J. Geophys. Res., 107( D9), https://doi.org/10.1029/2000JD000244

Mansell, E. R., MacGorman, D. R., Ziegler, C. L., y Straka, J. M., 2005: Charge structure and lightning sensitivity in a simulated multicell thunderstorm. Journal of Geophysical Research: Atmospheres, 110(D12), https://doi.org/10.1029/2004JD005287

Matsudo, C., García Skabar, Y., Righetti, S., Cutraro, F., Sacco, M., Dillon, M. E., Alvarez Imaz, M., Maldonado, P. y Salles, A., 2022: Sistima de pronóstico numérico del Servicio Meteorológico Nacional: componente operativa. XIV Congreso Argentino de Meteorología, http://hdl.handle.net/20.500.12160/2372

McCaul, E. W., Goodman, S. J., LaCasse, K. M., y Cecil, D. J., 2009: Forecasting lightning threat using cloud-resolving model simulations. Weather and Forecasting, 24(3), 709-729, https://doi.org/10.1175/2008WAF2222152.1

Nag, A, Murphy, MJ, Schulz, W, y Cummins, KL, 2015: Lightning locating systems: Insights on characteristics and validation techniques. Earth and Space Science, 2, 65–93. https://doi.org/10.1002/2014EA000051

M. G. Nicora, E. J. Quel, R. E. Bürgesser y E. E. Ávila, 2013: "Electric atmospheric activity in Argentina, a study for estimating the annual death rate by lightning," 2013 International Symposium on Lightning Protection (XII SIPDA), Belo Horizonte, Brazil, pp. 340-344, https://doi.org/10.1109/SIPDA.2013.6729213

Niu, Guo–Yue, Zong–Liang Yang, Kenneth E. Mitchell, Fei Chen, Michael B. Ek, Michael Barlage, Anil Kumar, Kevin Manning, Dev Niyogi, Enrique Rosero, Mukul Tewari y Youlong Xia, 2011: The community Noah land surface model with multiparameterization options (Noah–MP): 1. Model description and evaluation with local–scale measurements. J. Geophys. Res., 116, D12109. https://doi.org/10.1029/2010JD015139

Petersen, W. A., Christian, H. J., y Rutledge, S. A., 2005: TRMM observations of the global relationship between ice water content and lightning. Geophysical research letters, 32(14), https://doi.org/10.1029/2005GL023236

Price, C., y Rind, D., 1992: A simple lightning parameterization for calculating global lightning distributions. Journal of Geophysical Research: Atmospheres, 97(D9), 9919-9933, https://doi.org/10.1029/92JD00719

Rasmussen, K. L., M. M. Chaplin, M. D. Zuluaga, y R. A. Houze , 2016: Contribution of Extreme Convective Storms to Rainfall in South America. J. Hydrometeor., 17, 353–367, https://doi.org/10.1175/JHM-D-15-0067.1

Salio, P., Nicolini, M. y Zipser, E.J., 2007: Mesoscale Convective Systems over Southeastern South America and Their Relationship with the South American Low-Level Jet. Mon. Wea. Rev., 135, 1290–1309, https://doi.org/10.1175/MWR3305.1

Shin, H. H., y S.-Y. Hong, 2015: Representation of the subgrid-scale turbulent transport in convective boundary layers at gray-zone resolutions. Mon. Wea. Rev., 143, 250-271. https://doi.org/10.1175/MWR-D-14-00116.1

Skamarock, C., Klemp, B., Dudhia, J., Gill, O., Liu, Z., Berner, J., Wang, W., Powers, G., Duda, G., Barker, D.M., y Huang, X., 2019: A Description of the Advanced Research WRF Model Version 4, http://dx.doi.org/10.5065/1dfh-6p97

Sun, J., Xue, M., Wilson, J., Ballard, S., Onvlee, J., Joe, P., Barker, M., Li, P., Golding, B., Xu, M., Pinto, J., Sun, Wilson y Xu, D., 2013: Use of NWP for Nowcasting Convective Precipitation: Recent Progress and Challenges. Bulletin of the American Meteorological Society. 95. 409-426. https://doi.org/10.1175/BAMS-D-11-00263.1

Vidal, Luciano. 2014: Convección extrema sobre Sudamérica : estructura interna, ciclos de vida e influencia de la topografía en la iniciación. Tesis Doctoral, Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales, https://hdl.handle.net/20.500.12110/tesis_n5573_Vidal

Wilks, D. S., 2011: Statistical methods in the atmospheric sciences. Elsevier Academic Press.

Williams E. y Stanfill S., 2002: The physical origin of the land–ocean contrast in lightning activity, Comptes Rendus Physique, Volume 3, Issue 10, Pages 1277-1292, ISSN 1631-0705, https://doi.org/10.1016/S1631-0705(02)01407-X

Yair, Y., B. Lynn, C. Price, V. Kotroni, K. Lagouvardos, E. Morin, A. Mugnai, y M. d. C. Llasat, 2010: Predicting the potential for lightning activity in Mediterranean storms based on the Weather Research and Forecasting (WRF) model dynamic and microphysical fields, J. Geophys. Res., 115, D04205, https://doi.org/10.1029/2008JD010868

Zhou, X., Y. Zhu, D. Hou, Y. Luo, J. Peng, y R. Wobus, 2017: Performance of the New NCEP Global Ensemble Forecast System in a Parallel Experiment. Wea. Forecasting, 32, 1989–2004, https://doi.org/10.1175/WAF-D-17-0023.1

Zipser, E. J., D. J. Cecil, C. Liu, S. W. Nesbitt, and D. P. Yorty, 2006: Where are the most intense thunderstorms on earth?. Bull. Amer. Meteor. Soc., 87, 1057–1072, https://doi.org/10.1175/BAMS-87-8-1057

Downloads

Published

2025-02-05 — Updated on 2025-07-07

Versions

Issue

Section

Artículos

How to Cite

Cutraro, F., Dillon, M. E., & Ruiz, J. J. (2025). Study of different lightning parametrization and their evaluation with GLM observations. Meteorologica, 50, 036. https://doi.org/10.24215/1850468Xe036 (Original work published 2025)