Variabilidad del caudal del río Bermejo en la alta cuenca: relación con la precipitación y principales forzantes del sistema acoplado océano-atmósfera

Autores/as

DOI:

https://doi.org/10.24215/1850468Xe039

Palabras clave:

Río Bermejo, El Niño-Oscilación del Sur, saltos climáticos, dipolo del Océano Índico

Resumen

El río Bermejo es uno de los ríos más importantes del norte argentino, y uno de los principales afluentes del río Paraguay y Paraná. Juega un rol importante en diversas actividades económicas y sociales que se dan sobre su cuenca, siendo la agroindustria la actividad principal. Además, es el principal canalizador de la precipitación que tiene lugar en la región de las Yungas y el mayor productor de sedimentos de los ríos de Sudamérica. En este trabajo se estudian datos de caudal de la estación Aguas Blancas y Pozo Sarmiento, dos estaciones telemétricas pertenecientes a la red hidrológica nacional de Argentina con el objetivo de estudiar los forzantes de la variabilidad interanual del caudal del río. Se analizó el comportamiento del caudal mes a mes y se caracterizó su ciclo anual. Se definió el comienzo del ciclo hidrológico en noviembre, una fase húmeda durante los meses de noviembre a abril, y una fase seca durante los meses de mayo a octubre, las dos asociadas al monzón sudamericano y al régimen pluvial del río. Se evaluó la homogeneidad de las series de datos y se encontró un punto de quiebre en la década de los 70 para ambas series, que podría estar asociado al salto climático de 1976/7 y a partir del cual el caudal se vio incrementado hasta en un 40%. A través de un análisis espectral se identificaron variabilidades interanuales significativas potencialmente asociadas al El Niño-Oscilación del Sur (ENOS) y al Dipolo del Océano Índico (IOD por sus siglas en inglés) y una variabilidad bidecadal potencialmente asociada a la Oscilación Decadal del Pacifico (PDO por sus siglas en ingles). Luego, mediante un análisis de correlaciones, se encontró que los meses en que la precipitación afecta más la variabilidad anual del caudal son los meses de enero a abril para la estación Aguas Blancas, y el mes de marzo para la estación Pozo Sarmiento. Se calcularon correlaciones entre el caudal en Aguas Blancas y distintos índices climáticos durante los meses de enero a abril y se encontró que eventos de mayores (menores) caudales se condicen con condiciones tipo La Niña (El Niño) en el océano Pacífico, lo que sugiere una relación lineal entre el caudal y el ENOS. Posteriormente, se calcularon composiciones de distintas variables atmosféricas y oceánicas, y se pudo identificar un patrón de circulación que modula el caudal. Esta circulación es forzada por trenes de onda de Rossby que se producen por anomalías en la temperatura superficial de los océanos Pacífico e Índico (relacionadas al ENOS y al IOD).

Referencias

Agosta, E. A., 2014. The 18.6-year nodal tidal cycle and the bi-decadal precipitation oscillation over the plains to the east of subtropical andes, south america. International Journal of Climatology, 34(5), 1606–1614, http://dx.doi.org/10.1002/joc.3787

Almonacid, L., Pessacg, N., Diaz, B. G., Bonfili, O., Peri, P. L., 2021. Nueva base de datos reticulada de precipitación para la provincia de Santa Cruz, Argentina. Meteorologica, 47(1) https://doi.org/10.24215/1850468Xe010

Amsler, M. L., Drago, E. C., 2009. A review of the suspended sediment budget at the confluence of the paraná and paraguay rivers. Hydrological Processes: An International Journal, 23(22), 3230–3235, https://doi.org/10.1002/hyp.7390

Ayala, S. N., González, M. H., Rolla, A. L., 2023. A statistical forecast scheme of precipitation in the upper bermejo river basin in argentina. International Journal of River Basin Management, 21(2), 153–166, https://doi.org/10.1080/15715124.2021.1932952

Balmaceda‐Huarte, R., Olmo, M. E., Bettolli, M. L., Poggi, M. M. 2021. Evaluation of multiple reanalyses in reproducing the spatio‐temporal variability of temperature and precipitation indices over southern South America. International Journal of Climatology, 41(12), 5572-5595. https://doi.org/10.1002/joc.7142

Barros, V. R., Boninsegna, J. A., Camilloni, I. A., Chidiak, M., Magrín, G. O., Rusticucci, M., 2015. Climate change in argentina: trends, projections, impacts and adaptation. Wiley Interdisciplinary Reviews: Climate Change, 6(2), 151–169, https://doi.org/10.1002/wcc.316

Bazan, J. M., 2003. Enfoque ambiental de la cuenca del Río Bermejo. PhD thesis. https://dspace.uces.edu.ar/jspui/handle/123456789/5533

Beck, H. E., Zimmermann, N. E., McVicar, T. R., Vergopolan, N., Berg, A., & Wood, E. F., 2018. Present and future köppen-geiger climate classification maps at 1-km resolution. Scientific data, 5(1), 1–12, https://doi.org/10.1038/sdata.2018.214

Behera, S. K., Yamagata, T., 2015. Indo-pacific climate variability and predictability, vol 7,, ed. World Scientific. ISBN 978-981-4696-61-6

Berbery, E. H., Barros, V. R., 2002. The hydrologic cycle of the la plata basin in south america. Journal of Hydrometeorology, 3(6), 630–645, https://doi.org/10.1175/1525-7541(2002)003<0630:THCOTL>2.0.CO;2

Bianchi, A., Yañez, C., 1992. Las precipitaciones en el noroeste argentino, inst. Nac. Tecnol. Agropecu. Estación Exp. https://koha.fca.unju.edu.ar/cgi-bin/koha/opac-detail.pl?biblionumber=19187

Bond, N., Overland, J., Spillane, M., & Stabeno, P., 2003. Recent shifts in the state of the north pacific. Geophysical Research Letters, 30, https://doi.org/10.1029/2003GL018597

Brea, J., Spalletti, P., 2010. Generación y transporte de sedimentos en la cuenca binacional del río Bermejo. Caracterización y análisis de los procesos intervinientes. COBINABE, Buenos Aires. ISBN 978-987-25793-7-1

British Antartic Survey., 2024. https://legacy.bas.ac.uk. Página web consultada en junio de 2024.

Cai, J., Xu, J., Guan, Z., Powell, A., 2019. Interdecadal variability of el niño onset and its impact on monsoon systems over areas encircling the pacific ocean. Climate Dynamics, 52, 7173–7188, https://doi.org/10.1007/s00382-016-3377-z

Camiolo, M. D., Cozzolino, E., Jaureguizar, A. J., 2018. Material particulado en suspensión en el río de la plata: importancia del río bermejo en su variabilidad espacio-temporal. Revista de Teledetección, (51), 1–18, https://doi.org/10.4995/raet.2018.9864

Castino, F., Bookhagen, B., Strecker, M., 2016. River-discharge dynamics in the southern central andes and the 1976–77 global climate shift. Geophysical Research Letters, 43(22), 11–679, https://doi.org/10.1002/2016GL070868

Castino, F., Bookhagen, B., Strecker, M. R., 2017. Oscillations and trends of river discharge in the southern central andes and linkages with climate variability. Journal of Hydrology, 555, 108–124, https://doi.org/10.1016/j.jhydrol.2017.10.001

Chan, S. C., Behera, S. K., Yamagata, T., 2008. Indian Ocean Dipole influence on South American rainfall: Climatic impacts of Indian Ocean dipoles, El Nino-Southern oscillation, and their interaction with the monsoon systems in the Asia-Oceania region. Geophysical research letters, 35(14). https://doi.org/10.1029/2008GL034204

COREBE, 2021. Comisión regional del Río Bermejo. https://corebe.org.ar/web2022/cuenca/caracteristicas/. Página web consultada en junio de 2024.

Dogliotti, A. I., Ruddick, K., Guerrero, R., 2016. Seasonal and inter-annual turbidity variability in the río de la plata from 15 years of modis: El niño dilution effect. Estuarine, Coastal and Shelf Science, 182, 27–39, https://doi.org/10.1016/j.ecss.2016.09.013

Drumond, A. R. M., T. Ambrizzi, 2008. The role of the south Indian and Pacific oceans in South American monsoon variability. Theor. Appl. Climatol., 94, 125–137, https://doi.org/10.1007/s00704-007-0358-5

Elias, G., 2018. Una oportunidad para la gobernanza y la gestión de una cuenca binacional: la comisión binacional para el desarrollo de la alta cuenca del río bermejo y el río grande de tarija entre Argentina y Bolivia, https://ri.conicet.gov.ar/handle/11336/94981

Enfield, D. B., Mestas-Nuñez, A. M., Mayer, D. A., Cid-Serrano, L., 1999. How ubiquitous is the dipole relationship in tropical atlantic sea surface temperatures? Journal of Geophysical Research: Oceans, 104(C4), 7841–7848, https://doi.org/10.1029/1998JC900109

Ferrero, M. E., Villalba, R., De Membiela, M., Hidalgo, L. F., Luckman, B. H., 2015. Tree-ring based reconstruction of río bermejo streamflow in subtropical south america. Journal of Hydrology, 525, 572–584, https://doi.org/10.1016/j.jhydrol.2015.04.004

Garreaud, R., Vuille, M., Clement, A. C., 2003. The climate of the altiplano: observed current conditions and mechanisms of past changes. Palaeogeography, palaeoclimatology, palaeoecology, 194(1-3), 5–22, https://doi.org/10.1016/S0031-0182(03)00269-4

Garreaud, R. D., Vuille, M., Compagnucci, R., Marengo, J., 2009. Present-day south american climate. Palaeogeography, Palaeoclimatology, Palaeoecology, 281(3-4), 180–195, https://doi.org/10.1016/j.palaeo.2007.10.032

Gelbrecht, M., Boers, N., Kurths, J., 2021. Variability of the low-level circulation of the south american monsoon analysed with complex networks. The European Physical Journal Special Topics, 230, 3101 – 3120, https://doi.org/10.1140/epjs/s11734-021-00187-w

Giese, B., Urizar, S. C., Fučkar, N., 2002. Southern hemisphere origins of the 1976 climate shift. Geophysical Research Letters, 29, https://doi.org/10.1029/2001GL013268

González, M., Montroull, N., & Spennemann, P., 2008: Características de la precipitación en la llanura chaqueña argentina. XII Reunión de Agrometeorología, (pp. 6–10). https://www.siteaada.org/eventos

González, M. H., Cariaga, M. L., Skansi, M. d. l. M., 2012. Some factors that influence seasonal precipitation in argentinean chaco. Advances in Meteorology, 2012, https://doi.org/10.1155/2012/359164

González, M. H., Flores, O. K., 2010. Análisis de la precipitación en la llanura chaqueña argentina y su relación con el comportamiento de la circulación atmosférica y las temperaturas de la superficie del mar. Meteorologica, 35(2), 53–66. http://www.meteorologica.org.ar/volumen/volumen-35-no-1-y-no-2/

González, M. H., Murgida, A. M., 2012. Seasonal summer rainfall prediction in bermejo river basin in argentina. Climate Variability—Some Aspects, Challenges and Prospects, 7, 141–160. ISBN 978-953-307-699-7

Grimm, A., Pal, J., Giorgi, F., 2007. Connection between spring conditions and peak summer monsoon rainfall in south america: Role of soil moisture, surface temperature, and topography in eastern brazil. Journal of Climate, 20, 5929–5945, https://doi.org/10.1175/2007JCLI1684.1

Grimm, A. M., 2011. Interannual climate variability in south america: impacts on seasonal precipitation, extreme events, and possible effects of climate change. Stochastic Environmental Research and Risk Assessment, 25(4), 537–554, https://doi.org/10.1007/s00477-010-0420-1

Gulizia, C., Hannart, A., Camilloni, I., 2018. Caracterización de la variabilidad temporal de los caudales de los grandes ríos y de la precipitación en la cuenca del plata. CONGREMET XIII.

Haigh, I., Eliot, M., Pattiaratchi, C., 2011. Global influences of the 18.61 year nodal cycle and 8.85 year cycle of lunar perigee on high tidal levels. Journal of Geophysical Research, 116, https://doi.org/10.1029/2010JC006645

Harris, I., Osborn, T. J., Jones, P., Lister, D., 2020. Version 4 of the cru ts monthly high-resolution gridded multivariate climate dataset. Scientific data, 7(1), 1–18, https://doi.org/10.1038/s41597-020-0453-3

Hartmann, B., Wendler, G., 2005. The significance of the 1976 pacific climate shift in the climatology of alaska. Journal of Climate, 18, 4824–4839, https://doi.org/10.1175/JCLI3532.1

Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., y coautores, 2020. The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society, 146(730), 1999–2049, https://doi.org/10.1002/qj.3803

Houghton, J. T., Ding, Y., Griggs, D. J., Noguer, M., van der Linden, P. J., Dai, X., Maskell, K., & Johnson, C., 2001. Climate change 2001: the scientific basis. The Press Syndicate of the University of Cambridge. ISBN 0521 80767 0

Huang, B., Thorne, P. W., Banzon, V. F., Boyer, T., Chepurin, G., Lawrimore, J. H., Menne, M. J., Smith, T. M., Vose, R. S., Zhang, H.-M., 2017. Extended reconstructed sea surface temperature, version 5 (ersstv5): upgrades, validations, and intercomparisons. Journal of Climate, 30(20), 8179–8205, https://doi.org/10.1175/JCLI-D-16-0836.1

Hurtado, S. I., 2022. Precipitación observada en la temporada húmeda sobre Argentina subtropical: calidad de datos, variabilidad y forzantes asociados de gran escala. PhD thesis, Universidad Nacional de La Plata, https://doi.org/10.35537/10915/138536

Hurtado, S. I., Agosta, E. A., Zaninelli, P. G., 2023. Monthly variations of forcing mechanisms of austral summer precipitation in subtropical argentina. Atmospheric Research, (pp. 106609), https://doi.org/10.1016/j.atmosres.2023.106609

Hurtado, S. I., Zaninelli, P. G., Agosta, E. A., 2020. A multi-breakpoint methodology to detect changes in climatic time series. an application to wet season precipitation in subtropical argentina. Atmospheric Research, 241, 104955, https://doi.org/10.1016/j.atmosres.2020.104955

Hurtado, Santiago I., Michel C., Fernandez M. T., Calianno M., Easdale M., 2024. "Coping or adapting strategies? The importance of distinguishing between climatic shift and drought events for proper management of the pastoral systems in Northern Patagonia." Natural Hazards 120.7, 6401-6416. https://doi.org/10.1007/s11069-024-06482-8

Hurtado, S. I., Perri, D. V., Calianno, M., Martin-Albarracin, V. L., Easdale, M. H., 2024. Monthly gridded precipitation databases performance evaluation in North Patagonia, Argentina. Theoretical and Applied Climatology, 155(9), 8771-8783, https://doi.org/10.1007/s00704-024-05153-9

Hurtado, S. I., Zaninelli, P. G., Agosta, E. A., Ricetti, L., 2021. Infilling methods for monthly precipitation records with poor station network density in Subtropical Argentina. Atmospheric Research, 254, 105482, https://doi.org/10.1016/j.atmosres.2021.105482

Jacques-Coper, M., Garreaud, R. D., 2015. Characterization of the 1970s climate shift in south america. International Journal of Climatology, 35(8), 2164–2179, https://rmets.onlinelibrary.wiley.com/doi/full/10.1002/joc.4120

Jayat, J. P., Ortiz, P. E., 2010. Mamíferos del pedemonte de yungas de la alta cuenca del río bermejo en argentina: una línea de base de diversidad. Mastozoología neotropical, 17(1), 69–86. http://hdl.handle.net/11336/90752

Johnson, N., 2013. How many enso flavors can we distinguish. Journal of Climate, 26, 4816–4827, https://doi.org/10.1175/JCLI-D-12-00649.1

Junquas, C., Vera, C., Li, L., Le Treut, H., 2012. Summer precipitation variability over southeastern south america in a global warming scenario. Climate dynamics, 38, 1867–1883, https://doi.org/10.1007/s00382-011-1141-y

Kalnicky, R. A., 1974. Climatic change since 1950. Annals of the Association of American Geographers, 64(1), 100–112, https://doi.org/10.1111/j.1467-8306.1974.tb00957.x

Kayano, M. T., Cerón, W. L., Andreoli, R. V., Souza, R. A., Souza, I. P., Canchala, T., 2021. El Niño-Southern Oscillation and Indian Ocean Dipole modes: their effects on South American rainfall during austral spring. Atmosphere, 12(11), 1437, https://doi.org/10.3390/atmos12111437

Lauro, C., Vich A.I.J., Moreiras S.M., 2019. Streamflow variability and its relationship with climate indices in western rivers of Argentina. Hydrological Sciences Journal 64.5, 607-619, https://doi.org/10.1080/02626667.2019.1594820

Lavers, D. A., Simmons, A., Vamborg, F., Rodwell, M. J., 2022. An evaluation of ERA5 precipitation for climate monitoring, QJ Roy. Meteor. Soc., 148, 3152–3165, https://doi.org/10.1002/qj.4351

Liebmann, B., Smith, C. A., 1996. Description of a complete (interpolated) outgoing longwave radiation dataset. Bulletin of the American Meteorological Society, 77(6), 1275–1277. https://www.jstor.org/stable/26233278

Lim, E., Hendon, H., Rashid, H., 2013. Seasonal predictability of the southern annular mode due to its association with enso. Journal of Climate, 26, 8037–8054, https://doi.org/10.1175/JCLI-D-13-00006.1

Lovino, M. A., Müller, G. V., Pierrestegui, M. J., Espinosa, E., Rodríguez, L., 2022. Extreme precipitation events in the Austral Chaco region of Argentina. International Journal of Climatology, 42(11), 5985–6006. https://doi.org/10.1002/joc.7572

Malayeri, A. K., Saghafian, B., Raziei, T., 2021. Performance evaluation of ERA5 precipitation estimates across Iran. Arabian Journal of Geosciences, 14, 1-18. https://doi.org/10.1007/s12517-021-09079-8

Mantua, N. J., Hare, S. R., 2002. The pacific decadal oscillation. Journal of oceanography, 58(1), 35–44, https://doi.org/10.1023/A:1015820616384

Marcus, S., Viron, O., Dickey, J., 2011. Abrupt atmospheric torque changes and their role in the 1976–1977 climate regime shift. Journal of Geophysical Research, 116, https://doi.org/10.1029/2010JD015032

Marengo, J., Liebmann, B., Grimm, A., Misra, V., Silva Dias, P. d., Cavalcanti, I., Carvalho, L., Berbery, E., Ambrizzi, T., Vera, C. S., y coautores, 2012. Recent developments on the south american monsoon system. International Journal of Climatology, 32(1), 1–21, http://dx.doi.org/10.1002/joc.2254

Masiokas, M. H., Cara, L., Villalba, R., Pitte, P., Luckman, B. H., Toum, E., y coautores, 2019. Streamflow variations across the Andes (18–55 S) during the instrumental era. Scientific Reports, 9(1), 17879. https://doi.org/10.1038/s41598-019-53981-x

Meehl, G. A., Hu, A., Santer, B. D., 2009. The mid-1970s climate shift in the pacific and the relative roles of forced versus inherent decadal variability. Journal of Climate, 22(3), 780–792, https://doi.org/10.1175/2008JCLI2552.1

Minetti, J., 1983. El enfriamiento de la década de 1950 en la república argentina. Meteorologica, 14, 175–188.

Minetti, J., 1990. Comportamiento del borde anticiclónico subtropical en sudamérica. ii parte. Rev. Geofisica IPGH-OEA, (pp. 179–190).

Minetti, J. L., 1991. Estudio de las singularidades climáticas en series de temperaturas del Noroeste Argentino. PhD thesis, Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. https://bibliotecadigital.exactas.uba.ar/download/tesis/tesis_n2410_Minetti.pdf

Minetti, J. L., Poblete, A. G., Vargas, W., Ovejero, D. P., 2014. Saltos climáticos en el cuasi monzón sudamericano. Breves Contribuciones del Instituto de Estudios Geográficos, 25.

Minetti, J. L., Vargas, W. M., 1998. Trends and jumps in the annual precipitation in south america, south of the 15 s. Atmósfera, 11(4), 205–221.

Mo, K., 2000. Relationships between low-frequency variability in the southern hemisphere and sea surface temperature anomalies. Journal of Climate, 13, 3599–3610, https://doi.org/10.1175/1520-0442(2000)013<3599:RBLFVI>2.0.CO;2

Mo, K. C., Higgins, R. W., 1998. The pacific–south american modes and tropical convection during the southern hemisphere winter. Monthly Weather Review, 126(6), 1581–1596, https://doi.org/10.1175/1520-0493(1998)126<1581:TPSAMA>2.0.CO;2

Montini, T. L., Jones, C., Carvalho, L. M., 2019. The south american low-level jet: a new climatology, variability, and changes. Journal of Geophysical Research: Atmospheres, 124(3), 1200–1218, https://doi.org/10.1029/2018JD029634

Morello, J., Matteucci, S., Rodríguez, A., Silva, M., 2018. Ecorregiones y complejos ecosistémicos argentinos. 2da. Universidad de Buenos Aires, Facultad de Arquitectura, Diseño y Urbanismo, Argentina.

Moser, B. K., Stevens, G. R., 1992. Homogeneity of variance in the two-sample means test. The American Statistician, 46(1), 19–21. https://doi.org/10.1080/00031305.1992.10475839

Moyroud, Nicolas, and Frédéric Portet. "Introduction to QGIS." QGIS and generic tools 1 (2018): 1-17, https://doi.org/10.1002/9781119457091.ch1

Newman, M., Newman, M., Alexander, M., Ault, T., Cobb, K., Deser, C., Lorenzo, E., Mantua, N., Miller, A., Minobe, S., Nakamura, H., Schneider, N., Vimont, D., Phillips, A., Scott, J. D., Scott, J. D., Smith, C. A., & Smith, C. A., 2016. The pacific decadal oscillation, revisited. Journal of Climate, 29, 4399–4427, https://doi.org/10.1175/JCLI-D-15-0508.1

NOAA., 2024: National Oceanic and Atmospheric Administration. https://psl.noaa.gov/data/climateindices/list/. Página web consultada en junio de 2024.

Pedrozo, F., Bonetto, C., 1987. Nitrogen and phosphorus transport in the bermejo river (south america). Rev. Hydrobiol. Trop, 20(2), 91–99.

Penland, C., Sun, D.-Z., Capotondi, A., Vimont, D. J., 2010. A brief introduction to el nino and la nina. Washington DC American Geophysical Union Geophysical Monograph Series, 189, 53–64, http://dx.doi.org/10.1029/2008GM000846

Perri, D. V., Hurtado, S. I., Bruzzone, O., Easdale, M. H., 2024. Optimal automatic enhanced ERA5 daily precipitation data for environmental and agricultural monitoring tools in scarce data regions. Theoretical and Applied Climatology, 155(3), 1847-1856. https://doi.org/10.1007/s00704-023-04730-8

Pessacg. N, Flaherty S., Solman S., Pascual M., 2020. Climate change in northern Patagonia: critical decrease in water resources. Theoretical and Applied Climatology, 140(3), 807-822. https://doi.org/10.1007/s00704-020-03104-8

Pettitt, A. N., 1979. A non-parametric approach to the change-point problem. Journal of the sunRoyal Statistical Society: Series C (Applied Statistics), 28(2), 126–135, https://doi.org/10.2307/2346729

Ribeiro, S., Caineta, J., Costa, A. C., 2016. Review and discussion of homogenisation methods for climate data. Physics and Chemistry of the Earth, Parts A/B/C, 94, 167–179, https://doi.org/10.1016/j.pce.2015.08.007

Ricetti, L., Hurtado, S. I., Scarel, E. A., Cesanelli, A., 2024. Variabilidad del caudal del río Neuquén en las fases de su ciclo anual y su relación con índices climáticos. Meteorologica, 49, 026-026. https://doi.org/10.24215/1850468Xe026

Ricetti, L., Hurtado, S. I., Agosta, E. A., 2025. Understanding streamflow variability over drylands in a water-scarce region: A case study in Patagonia. Hydrological Sciences Journal. https://doi.org/10.1080/02626667.2025.2475109

Rivera, J. A., Penalba, O. C., 2018. Spatio-temporal assessment of streamflow droughts over Southern South America: 1961–2006. Theoretical and applied climatology, 133(3), 1021-1033. https://doi.org/10.1007/s00704-017-2243-1

Rusticucci, M., N. Zazulie, G. B. Raga, 2014. Regional winter climate of the southern central Andes: Assessing the performance of ERA-Interim for climate studies, J. Geophys. Res. Atmos., 119, 8568–8582, https://doi.org/10.1002/2013JD021167

Saji, N. H., T. Yamagata, 2003. Possible impacts of Indian Ocean dipole mode events on global climate. Climate Res., 25, 151–169, https://doi.org/10.3354/cr025151.

Schneider, U., Fuchs, T., Meyer-Christoffer, A., Rudolf, B., 2008. Global precipitation analysis products of the gpcc. Global Precipitation Climatology Centre (GPCC), DWD, Internet Publikation, 112.

Sena, A. C., Magnusdottir, G., 2021. Influence of the Indian Ocean dipole on the large-scale circulation in South America. Journal of Climate, 34(15), 6057-6068, https://doi.org/10.1175/JCLI-D-20-0669.1

Solomon, S., Manning, M., Marquis, M., Qin, D., y coautores, 2007. Climate change 2007-the physical science basis: Working group I contribution to the fourth assessment report of the IPCC, volume 4. Cambridge university press. https://www.ipcc.ch/report/ar4/wg1/

Sun, S., J. Lan, T. Yue Fang, X. Gao, 2015. A triggering mechanism for the Indian Ocean dipoles independent of ENSO. J. Climate, 28, 5063–5076, https://doi.org/10.1175/JCLI-D-14-00580.1

Sun, Q., Miao, C., Duan, Q., Ashouri, H., Sorooshian, S., Hsu, K.-L., 2018. A review of global precipitation data sets: Data sources, estimation, and intercomparisons. Reviews of Geophysics, 56, 79–107. https://doi.org/10.1002/2017RG000574

Takaya, K., Nakamura, H., 2001. A formulation of a phase-independent wave-activity flux for stationary and migratory quasigeostrophic eddies on a zonally varying basic flow. Journal of the Atmospheric Sciences, 58(6), 608–627, https://doi.org/10.1175/1520-0469(2001)058<0608:AFOAPI>2.0.CO;2

Tarek, M., Brissette, F., Arsenault, R., 2021. Uncertainty of gridded precipitation and temperature reference datasets in climate change impact studies, Hydrol. Earth Syst. Sci., 25, 3331–3350, https://doi.org/10.5194/hess-25-3331-2021

Veldkamp, T. I., Wada, Y., de Moel, H., Kummu, M., Eisner, S., Aerts, J. C., Ward, P. J., 2015. Changing mechanism of global water scarcity events: Impacts of socioeconomic changes and inter-annual hydro-climatic variability. Global Environmental Change, 32, 18-29. https://doi.org/10.1016/j.gloenvcha.2015.02.011

Veldkamp, T. I. E., Wada, Y., Aerts, J. C. J. H., Ward, P. J., 2016. Towards a global water scarcity risk assessment framework: incorporation of probability distributions and hydro-climatic variability. Environmental research letters, 11(2), https://doi.org/10.1088/1748-9326/11/2/024006

Vera, C., Higgins, W., Amador, J., Ambrizzi, T., Garreaud, R., Gochis, D., Gutzler, D., Lettenmaier, D., Marengo, J., Mechoso, C., y coautores, 2006. Toward a unified view of the american monsoon systems. Journal of climate, 19(20), 4977–5000, https://doi.org/10.1175/JCLI3896.1

Vera, C. S. & Osman, M., 2018: Activity of the southern annular mode during 2015–2016 el niño event and its impact on southern hemisphere climate anomalies. International Journal of Climatology, 38, e1288–e1295, http://dx.doi.org/10.1002/joc.5419

Wainwright, L., Meyers, G., Wijffels, S., & Pigot, L., 2008: Change in the indonesian throughflow with the climatic shift of 1976/77. Geophysical Research Letters, 35, https://doi.org/10.1029/2007GL031911

Wang, C., Deser, C., Yu, J.-Y., DiNezio, P., & Clement, A., 2017: El niño and southern oscillation (enso): a review. Coral reefs of the eastern tropical Pacific: Persistence and loss in a dynamic environment, 85–106, https://doi.org/10.1007/978-94-017-7499-4_4

Wang, X., and C. Wang, 2014: Different impacts of various El Niño events on the Indian Ocean dipole. Climate Dyn., 42, 991– 1005, https://doi.org/10.1007/s00382-013-1711-2

Wilks, D. S., 2011: Statistical methods in the atmospheric sciences, volume 100. Academic press. ISBN:978-0-12-385022-5

Yamamoto, R., Iwashima, T., & Hoshiai, M., 1986: An analysis of climatic jump. Journal of the Meteorological Society of Japan. Ser. II, 64(2), 273–281, https://doi.org/10.2151/jmsj1965.64.2_273

Yamamoto, R., Iwashima, T., Kazadi, S.-N., & Hoshiai, M., 1985: Climatic jump: a hypothesis in climate diagnosis. Journal of the Meteorological Society of Japan. Ser. II, 63(6), 1157–1160, https://doi.org/10.2151/jmsj1965.63.6_1157

Zhu, Y., Wang, T., & Wang, H., 2016: Relative contribution of the anthropogenic forcing and natural variability to the interdecadal shift of climate during the late 1970s and 1990s. Science Bulletin, 61, 416–424, https://doi.org/10.1007/s11434-016-1012-3

Descargas

Publicado

03-07-2025 — Actualizado el 31-10-2025

Versiones

Número

Sección

Artículos

Cómo citar

Aguirre Glik, J. O., Hurtado, S. I., Zaninelli, P. G., & Adduca, S. (2025). Variabilidad del caudal del río Bermejo en la alta cuenca: relación con la precipitación y principales forzantes del sistema acoplado océano-atmósfera. Meteorologica, 50, 039. https://doi.org/10.24215/1850468Xe039 (Original work published 2025)