Dinámica del agua subsuperficial durante la sequía 2019-2023 en el sudeste de Córdoba
DOI:
https://doi.org/10.24215/1850468Xe043Palabras clave:
nivel freático, humedad del suelo, modelos numéricos, estimaciones satelitalesResumen
El núcleo agrícola del sudeste de la Provincia de Córdoba ocupa una región de planicies con aguas subterráneas cercanas a la superficie, capaces de complementar los aportes pluviales en periodos en los que son deficitarios. Este trabajo investiga cómo impactó la última sequía 2019-2023 sobre la humedad del suelo superficial, la humedad del suelo en profundidad y el nivel freático, en 8 sitios cercanos a la localidad de Marcos Juárez. Para ello, analizamos observaciones puntuales de nivel freático (NF) y cuatro productos (SMAP-L4, SMOS-L3-L4, VST-CONAE, NOAH-SMAP) que informan la humedad del suelo en superficie (HSS) y profundidad (HSP). Sin que la precipitación mostrara una tendencia marcada entre junio 2018 y diciembre 2019, las series de NF, HSS y HSP declinaron lineal y significativamente, evidenciando retardos entre las manifestaciones meteorológicas, agrícolas e hidrológicas de la sequía. En promedio, el NF descendió 0.53 m/año, pasando de -1.42 m (enero 2019) a -4.85 m (octubre 2023), con marcas <-6 m en algunos sitios, no registradas desde principios del siglo. Tres de cuatro productos detectaron que la HSS presenta mayor tendencia, rango dinámico y variabilidad temporal que la HSP, en consonancia con el conocimiento general existente. Distintos análisis sobre estos productos muestran: mayor humedad para VST y NOAH que para SMAP y SMOS; acuerdo en las anomalías mensuales positivas antes del 2020 y negativas después del 2021; mayor correlación temporal de las anomalías mensuales medias en las combinaciones SMAP-SMOS y SMAP-NOAH. El NF se asoció significativamente a HSP mientras que la precipitación solo lo hizo con HSS. Observamos correlación no lineal entre el NF y HSP en casi todos los sitios y productos, acentuada cuando la HSP precede en un mes al NF. Los rendimientos del maíz y la soja disminuyeron en general hacia el final del periodo cuando la sequía se hizo mayormente presente. Sin embargo, hubo excepciones para la soja, donde el NF, aun con una tendencia de descenso, se mantuvo cerca de la superficie minimizando el impacto del déficit sobre el rendimiento.
Referencias
Abelen, S., Seitz, F., Abarca-del-Rio, R., Güntner, A., 2015. Droughts and Floods in the La Plata Basin in Soil Moisture Data and GRACE. Remote Sens., 7, 7324-7349. http://doi.org/10.3390/rs70607324.
Al Bitar, A., Mialon, A., Kerr, Y.H., et al., 2017: The global SMOS Level 3 daily soil moisture and brightness temperature maps, Earth Syst. Sci. Data, 9, 293–315. http://doi.org/10.5194/essd-9-293-2017.
Al Bitar, A. y Mahmoodi, A., 2020. Algorithm Theoretical Basis Document (ATBD) for the SMOS Level 4 Root Zone Soil Moisture (Version v30_01). Zenodo. http://doi.org/10.5281/zenodo.4298572.
Al Bitar A., Mahmoodi, A., Kerr, Y., et al., 2021: Global Assessment of Droughts in the Last Decade from SMOS Root Zone Soil Moisture. 2021 IGARSS IEEE Int. Geosci. Remote Sens. Symp., 11-16 de Julio 2021, Bruselas, Bélgica. pp. 8628-8631. http://doi.org/10.1109/IGARSS47720.2021.9554773.
Alsina, S., Nosetto, M.D., Jobbágy, E.G., 2020: Base de datos “NAPA”: Primera síntesis de la dinámica freática pampeana desde 1950 al presente. Cienc del suelo 38(2), 262-273.
Anguela, P.T., Zribi. M., Hasenauer, S., et al., 2008: Analysis of surface and root-zone soil moisture dynamics with ERS scatterometer and the hydrometeorological model SAFRAN-ISBAMODCOU at Grand Morin watershed (France). Hydrol. Earth Syst. Sci., 12, 1415–1424. http://doi.org/10.5194/hess-12-1415-2008.
Arias, P.A., Rivera, J.A., Sörensson, A.A. et al., 2024: Interplay between climate change and climate variability: the 2022 drought in Central South America. Climatic Change 177, 6. http://doi.org/10.1007/s10584-023-03664-4.
Azcueta, M., Gonzalez, J.P.C., Zajc, T., et al., 2022: External Calibration Results of the SAOCOM-1A Commissioning Phase. IEEE Transactions on Geoscience and Remote Sensing, 60, 1-8. http://doi.org/10.1109/TGRS.2021.3075369.
BCR (Bolsa de Cereales de Rosario), 2023: El costo de la sequía 2022/23 ya asciende a más de USD$14.140 millones para los productores de soja, trigo y maíz. N°2091-10/03/23.
Berghuijs, W.R., Woods, R.A., Anderson, B.J., et al., 2025: Annual memory in the terrestrial water cycle, Hydrol. Earth Syst. Sci., 29, 1319–1333. http://doi.org/10.5194/hess-29-1319-2025.
Besnier, J., Getirana, A., Hiroko, B., Venkataraman, L., 2024: Characterizing the 2019-2021 drought in La Plata River Basin with GLDAS and SMAP, Journal of Hydrology: Regional Studies, 52, 101679, ISSN 2214-5818. http://doi.org/10.1016/j.ejrh.2024.101679.
Blank, D., Eicker, A., Jensen, L., y Güntner, A., 2023: A global analysis of water storage variations from remotely sensed soil moisture and daily satellite gravimetry, Hydrol. Earth Syst. Sci., 27, 2413–2435. http://doi.org/10.5194/hess-27-2413-2023.
Blankenship, C.B., Case, J.L., Zavodsky, B.T. y Crosson, W.L., 2016: Assimilation of SMOS Retrievals in the Land Information System. IEEE Transactions on Geoscience and Remote Sensing 54, 11, 6320–6332. http://doi.org/10.1109/TGRS.2016.2579604.
Cappelletti, L.M., Schrapffer, A., Sörensson, A., 2021: Identificación y monitoreo de áreas anegadas en una región productiva de Argentina empleando escenas Landsat. Centro Argentino de Meteorólogos; Meteorológica; 47; 2; 10-2021; 1-13. http://doi.org/10.24215/1850468Xe014.
Cappelletti, L.M., 2024: Tesis doctoral "Agua superficial de las llanuras del núcleo agroproductivo de Argentina : análisis basado en múltiples líneas de evidencia". Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, p.131. https://bibliotecadigital.exactas.uba.ar/download/tesis/tesis_n7690_Cappelletti.pdf.
Cappelletti, L.M., Sörensson, A.A., y Jobbágy, E., 2025: Floods from above and below: insights beyond increases in daily precipitation extremes over flat agricultural plains. Hydrological Sciences Journal, 70(10), 1761–1771. http://doi.org/10.1080/02626667.2025.2504433.
CATDS, 2022a: CATDS-PDC L3SM Filtered - 1 day global map of soil moisture values from SMOS satellite. CATDS (CNES, IFREMER, CESBIO). http://doi.org/:10.12770/9cef422f-ed3f-4090-9556-b2e895ba2ca8, accedido el 27/06/2024).
CATDS, 2022b: CATDS-PDC L4SM RZSM - 1 day global map of root zone soil moisture values from SMOS satellite. CATDS (CNES, IFREMER, CESBIO). http://doi.org/10.12770/316e77af-cb72-4312-96a3-3011cc5068d4, accedido el 27/06/2024).
Carranza, C., Nolet, C., Pezij, M., y van der Ploeg, M., 2021: Root zone soil moisture estimation with Random Forest, J. Hydrol., 593, 125840. http://doi.org/10.1016/j.jhydrol.2020.125840.
Chen, X. y Hu, Q, 2004: Groundwater influences on soil moisture and surface evaporation, Journal of Hydrology, Volume 297, Issues 1–4, 285-300. http://doi.org/10.1016/j.jhydrol.2004.04.019.
Chen, J.L., Wilson, C.R., Tapley, B.D., et al., 2010: Recent La Plata basin drought conditions observed by satellite gravimetry, J. Geophys. Res., 115, D22108. http://doi.org/10.1029/2010JD014689.
Colliander, A., Jackson, T.J., Bindlish, R., et al., 2017: Validation of SMAP surface soil moisture products with core validation sites. Remote Sensing of Environment, 191, 215-231. http://doi.org/10.1016/j.rse.2017.01.021.
Collazo, S., Suli, S., Zaninelli, P.G., et al., 2024: Influence of large-scale circulation and local feedbacks on extreme summer heat in Argentina in 2022/23. Commun Earth Environ 5, 231 (2024). http://doi.org/10.1038/s43247-024-01386-8.
Dari, J., Filippucci, P., Brocca, L., et al., 2025: A novel approach for estimating groundwater recharge leveraging high-resolution satellite soil moisture, Journal of Hydrology, 652, 132678. http://doi.org/10.1016/j.jhydrol.2025.132678.
Dorigo, W., deJeu, R., Chung, D., et al., 2012: Evaluating global trends (1988–2010) in harmonized multi-satellite surface soil moisture, Geophys. Res. Lett., 39, L18405. http://doi.org/10.1029/2012GL052988.
Dorigo, W., Dietrich, S., Aires, F., et al., 2021: Closing the Water Cycle from Observations across Scales: Where Do We Stand?. Bull. Amer. Meteor. Soc., 102, E1897–E1935. http://doi.org/10.1175/BAMS-D-19-0316.1.
Dumedah, G., Walker, J.P., y Merlin, O., 2015: Root-zone soil moisture estimation from assimilation of downscaled soil moisture and ocean salinity data, Adv. Water Resour., 84, 14–22. http://doi.org/10.1016/j.advwatres.2015.07.021.
Entekhabi D., Njoku, E.G., O'Neill, P.E., et al., 2010: The soil moisture active passive (SMAP) mission, Proc. IEEE, 98, 5, 704–716. http://doi.org/10.1109/JPROC.2010.2043918.
European Commission, Joint Research Centre, Naumann, G., Podestá, G., Marengo, J. y otros, 2023: Extreme and long-term drought in the La Plata Basin: event evolution and impact assessment until September 2022: a joint report from EC-JRC, CEMADEN, SISSA and WMO. Publications Office of the European Union. https://data.europa.eu/doi/10.2760/62557.
Famiglietti, J.S., 2004: Remote Sensing of Terrestrial Water Storage, Soil Moisture and Surface Waters. In The State of the Planet: Frontiers and Challenges in Geophysics. R.S.J. Sparks and C.J. Hawkesworth. http://doi.org/10.1029/150GM16.
Fan, Y., Li, H., Miguez-Macho, G., 2013: Global patterns of groundwater table depth. Science 339, 940–943. http://doi.org/10.1126/science.1229881.
Fernandez-Moran, R., Al-Yaari, A., Mialon, A., et al., 2017: SMOS-IC: An Alternative SMOS Soil Moisture and Vegetation Optical Depth Product. Remote Sens., 9, 457. https://doi.org/10.3390/rs9050457.
Florio, E.L., Mercau, J.L., Jobbágy, E.G., Nosetto, M.D., 2014: Interactive effects of water-table depth, rainfall variation, and sowing date on maize production in the Western Pampas. Agr. Water Manage. 146, 75–83. http://doi.org/10.1016/j.agwat.2014.07.022.
Ford, T.W., Harris, E., y Quiring, S.M., 2014: Estimating root zone soil moisture using near-surface observations from SMOS, Hydrol. Earth Syst. Sci., 18, 139–154. http://doi.org/10.5194/hess-18-139-2014.
Ford, T.W., y Quiring, S.M., 2019: Comparison of contemporary in situ, model, and satellite remote sensing soil moisture with a focus on drought monitoring. Water Resources Research, 55, 1565–1582. http://doi.org/10.1029/2018WR024039.
Gavahi, F., Abbaszadeh, P., Moradkhani, et al., 2020: Multivariate assimilation of remotely sensed soil moisture and evapotranspiration for drought monitoring, J. Hydrometeorology, 21, 10, 2293–2308. http://doi.org/10.1175/JHM-D-20-0057.1.
Gelaro, R., McCarty, W., Suárez, M. J., et al., 2017: The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2). Journal of Climate, 30(14), 5419-5454. http://doi.org/10.1175/JCLI-D-16-0758.1.
Giacobone, D.B., Blarasin, M.T., Matteoda, E.M., et al., 2023: Contexto regional y local de recarga de acuíferos en la planicie fluvio-eólica de Marcos Juárez; Asociación Internacional de Hidrogeólogos Grupo Argentino; Revista Argentina de Hidrogeología; 2; 11-2023; 58-80. URL: http://hdl.handle.net/11336/222801.
Giles, J.A., Menéndez, C.G., y Ruscica, R.C., 2022: Nonlocal Impacts of Soil Moisture Variability in South America: Linking Two Land–Atmosphere Coupling Hot Spots. J. Climate, 36, 227–242. http://doi.org/10.1175/JCLI-D-21-0510.1.
Heudorfer, B., Haaf, E., Stahl, K., y Barthel, R., 2019: Index-based characterization and quantification of groundwater dynamics. Water Resources Research, 55, 5575–5592. https://doi.org/10.1029/2018WR024418.
Hirschi, M., Stradiotti, P., Crezee, B., et al., 2025: Potential of long-term satellite observations and reanalysis products for characterising soil drying: trends and drought events, Hydrol. Earth Syst. Sci., 29, 397–425. http://doi.org/10.5194/hess-29-397-2025.
Hoogenboom, G., Porter, C.H., Shelia, V., et al., 2017: Decision Support System for Agrotechnology Transfer (DSSAT) Version 4.7 (https://DSSAT.net). DSSAT Foundation, Gainesville, Florida, USA.
Houspanossian, J., Giménez, R., Whitworth-Hulse, J.I., et al., 2023: Agricultural expansion raises groundwater and increases flooding in the South American plains. Science. 380, 1344-1348. http://doi.org/10.1126/science.add5462.
IDECOR, 2023. Mapa de Cobertura y Uso de Suelo de la Provincia de Córdoba 2022-2023. Infraestructura de Datos Espaciales de Córdoba (IDECOR), noviembre de 2023. https://obs-idecor-mapas-docs.obs.sa-argentina-1.myhuaweicloud.com/m482/INFORME-Mapa-de-Coberturas-y-usos-del-Suelo-2022-23.pdf.
Jobbágy, E.G., Aragón, R. y Nosetto, M.D., 2007: Los cultivos y la napa freática en la llanura pampeana. Agromercado, 268:8-10.
Jobbágy, E.G. Nosetto, M.D., Santoni C., y Baldi, G., 2008: El desafío ecohidrológico de las transiciónes entre sistemas leñosos y herbáceos en la llanura Chaco-Pampeana. Ecología Austral – Sección Especial ‘‘Problemas Ambientales, 18: 305-322. Disponible en: https://ojs.ecologiaaustral.com.ar/index.php/Ecologia_Austral/article/view/1377
Kendall, M., 1975: Rank correlation measures, 202, Charles Griffin, London, p. 15
Kerr, Y.H., Waldteufel, P., Wigneron, J.P., et al.., 2001: Soil moisture retrieval from space: The soil moisture and ocean salinity (SMOS) mission. IEEE Trans. Geosci. Remote Sens., 39, 8, pp. 1729–1735. http://doi.org/10.1109/36.942551.
Kerr, Y.H., Al-Yaari, A., Rodriguez-Fernandez, N., et al., 2016: Overview of SMOS performance in terms of global soil moisture monitoring after six years in operation. Remote Sensing of Environment, 180, 40-63. http://doi.org/10.1016/j.rse.2016.02.042.
Kornelsen, K.C. y Coulibaly, P., 2014: Root-zone soil moisture estimation using data-driven methods, Water Resour. Res., 50, 2946–2962. http://doi.org/10.1002/2013wr014127.
Koster, R.D., Suarez, M.J., Ducharne, A., et al., 2000: A catchment-based approach to modeling land surface processes in a general circulation model: 1. Model structure. Journal of Geophysical Research, 105(D20), 24809. http://doi.org/10.1029/2000JD900327.
Kucheruk L.L., Spennemann, P.C., Naumann, G., Rivera, J.A., 2024: Climatología de sequías de rápido desarrollo en la Pampa húmeda Argentina; Centro Argentino de Meteorólogos; Meteorologica; 49; 3-2024; 1-19. https://doi.org/10.24215/1850468Xe025.
Kumar, S.V., Peters-Lidard, C.D., Tian, Y., et al., 2006: Land information system: An interoperable framework for high resolution land surface modeling. Environmental modelling & software, 21 (10), 1402-1415. http://doi.org/10.1016/j.envsoft.2005.07.004.
Li, B., Rodell, M., Kumar, S., et al., 2019: Global GRACE data assimilation for groundwater and drought monitoring: Advances and challenges. Water Resources Research. http://doi.org/10.1029/2018WR024618.
Liu, Y.Y., Dorigo, W.A., Parinussa, R.M., et al., 2012: Trend-preserving blending of passive and active microwave soil moisture retrievals. Remote Sens. Environ., 123, 280–297. http://doi.org/10.1016/j.rse.2012.03.014.
Liu, E., Zhu, Y., Calvet, J.-C., et al.., 2024: Evaluation of root zone soil moisture products over the Huai River basin, Hydrol. Earth Syst. Sci., 28, 2375–2400. http://doi.org/10.5194/hess-28-2375-2024.
Lozza, H., Thomas, P., Bustos Revol, S. y Mogadouro, J., 2024: VST - Visor de series temporales de la humedad en el perfil de suelo. Manual de usuario de productos. SAOCOM, CONAE. https://catalogos5.conae.gov.ar/humedad_serie/docs/CONAE_MOD_MHS_DSS_VST_ManualUsuarios_e01.pdf).
Mann, H.B., 1945: Nonparametric tests against trend. Econometrica, 13, 245-259. https://doi.org/10.2307/1907187.
Martínez-de la Torre, A., y Miguez-Macho, G., 2019: Groundwater influence on soil moisture memory and land–atmosphere fluxes in the Iberian Peninsula, Hydrol. Earth Syst. Sci., 23, 4909–4932. http://doi.org/10.5194/hess-23-4909-2019.
Massari, C., Brocca, L., Tarpanelli, A., y Moramarco, T., 2015: Data Assimilation of Satellite Soil Moisture into Rainfall-Runoff Modelling: A Complex Recipe?, Remote Sensing, 7, 11403–11433, http://doi.org/10.3390/rs70911403.
Mercau, J.L., Nosetto, M.D., Bert, F., et al., 2016: Shallow groundwater dynamics in the Pampas: Climate, landscape and crop choice effects. Agricultural Water Management, 163, 159–168. https://doi.org/10.1016/j.agwat.2015.09.013.
Miller, D.A., y White, R.A., 1998: A conterminous United States multilayer soil characteristics dataset for regional climate and hydrology modeling. Earth interact., 2 (2), 1-26, http://doi.org/10.1175/1087-3562(1998)002<0001:ACUSMS>2.3.CO;2.
Niu, G.Y., y otros, 2011: The community Noah land surface model with multiparameterization options (Noah-MP): 1. Model description and evaluation with local-scale measurements. J. Geophys. Res., 116, D12109. http://doi.org/10.1029/2010JD015139.
Nosetto, M.D., Jobbágy, E.G., Jackson, R.B., y Sznaider., G.A., 2009: Reciprocal influence of crops and shallow ground water in sandy landscapes of the Inland Pampas. Field Crops Research, 113, 2: 138-148. http://doi.org/10.1016/j.fcr.2009.04.016.
Obregón, F.M., Pulido, M., y Lucini, M., 2024: Soil Moisture Estimation in the Argentinian Pampas Using Data Assimilation of SMAP and SMOS Retrievals. 2024 IEEE Congreso Bienal ARGENCON, San Nicolás de los Arroyos, Argentina, 2024, pp. 1-8. http://doi.org/10.1109/ARGENCON62399.2024.10735721.
Ojha, N., Mahmoodi, A., Mialon, A., et al., 2024: Assessment of SMOS Root Zone Soil Moisture: A Comparative Study Using SMAP, ERA5, and GLDAS. IEEE Access, 12, pp. 76121-76132. http://doi.org/10.1109/ACCESS.2024.3404123.
Opie, S., Taylor, R.G., Brierley, C.M., et al., 2020: Climate–groundwater dynamics inferred from GRACE and the role of hydraulic memory, Earth Syst. Dynam., 11, 775–791. https://doi.org/10.5194/esd-11-775-2020.
Pal, S., Dominguez, F., Bollatti, P., et al., 2021: Investigating the effects of land use change on subsurface, surface, and atmospheric branches of the hydrologic cycle in central Argentina. Water Resources Research, 57, e2021WR029704. https://doi.org/10.1029/2021WR029704.
Pablos, M., González-Zamora, Á., Sánchez, N., y Martínez-Fernández, J., 2018: Assessment of Root Zone Soil Moisture Estimations from SMAP, SMOS and MODIS Observations, Remote Sens., 10, 981, https://doi.org/10.3390/rs10070981.
Pablos, M., Turiel, A., Vall-llossera, M., et al., 2021: Correlated Triple Collocation to Estimate SMOS, SMAP and ERA5-Land Soil Moisture Errors. 2021 IGARSS IEEE Int. Geosci. Remote Sens. Symp., 11-16 de Julio 2021, Bruselas, Belgica. pp. 6182-6185, http://doi.org/10.1109/IGARSS47720.2021.9553378.
Peretti, M., Spennemann, P.C., Fernández Long, M.E., 2023: Trends in soil moisture content and water deficits in Argentina and the role of climate contribution; Springer Wien; Theory & Application Climatology; 152; 3-4; 5-2023; 1189-1201. http://doi.org/10.1007/s00704-023-04428-x.
Pinnington, E., Quaife, T., y Black, E., 2018: Impact of Remotely Sensed Soil Moisture and Precipitation on Soil Moisture Prediction in a Data Assimilation System with the JULES Land Surface Model. Hydrol. Earth Syst. Sci., 22 (4): 2575–2588. http://doi.org/10.5194/hess-22-2575-2018.
Raoult, N., Ruscica, R.C., Salvia, M., y Sörensson, A.A., 2022: Soil Moisture Drydown Detection is Hindered by Model-based Rescaling. IEEE Geoscience and Remote Sensing Letters, 19, 1-5 http://doi.org/10.1109/LGRS.2022.3178685.
Reichle, R.H., De Lannoy, G.J.M., Liu, Q., et al., 2017: Assessment of the SMAP Level-4 Surface and Root-Zone Soil Moisture Product Using In Situ Measurements. Journal of Hydrometeorology, 18(10), 2621-2645. http://doi.org/10.1175/JHM-D-17-0063.1.
Reichle, R.H., De Lannoy, G., Koster, R.D., et al., 2022: SMAP L4 Global 3-hourly 9 km EASE-Grid Surface and Root Zone Soil Moisture Geophysical Data, Version 7. [Subset: 66ºW 29.35ºS; 59.4ºW 35.3ºS]. Boulder, Colorado USA. NASA National Snow and Ice Data Center Distributed Active Archive Center. https://doi.org/10.5067/EVKPQZ4AFC4D, accedido el 27/06/2024.
Reynolds, C.A., Jackson, T.J., y Rawls, W.J., 2000: Estimating soil water-holding capacities by linking the Food and Agriculture Organization soil map of the world with global pedon databases and continuous pedotransfer functions. Water Resour. Res. 36 (12), 3653-3662. http://doi.org/10.1029/2000WR900130.
Rivera, J.A., 2024: Characterization of the recent (2019–2022) La Plata Basin hydrological drought from a centennial-scale perspective, HydroResearch, 7, 140-153. http://doi.org/10.1016/j.hydres.2024.02.002.
Ruscica, R.C., Sörensson, A.A. y Menéndez, C.G., 2014: Hydrological links in Southeastern South America: soil moisture memory and coupling within a hot spot. Int. J. Climatol., 34: 3641-3653. http://doi.org/10.1002/joc.3930.
Ruscica, R.C., Polcher, J., Salvia, M.M., et al., 2020: Spatio-temporal soil drying in southeastern South America: the importance of effective sampling frequency and observational errors on drydown time scale estimates. International Journal of Remote Sensing, 41:20, 7958-7992. http://doi.org/10.1080/01431161.2020.1767825.
Rushton, K.R., Eilers, V.H.M., Carter, R.C., 2006: Improved soil moisture balance methodology for recharge estimation, Journal of Hydrology, 318, Issues 1–4, 379-399. http://doi.org/10.1016/j.jhydrol.2005.06.022.
Salvia, M.M., Sanchez, N., Piles, M., et al., 2021: The Added-Value of Remotely-Sensed Soil Moisture Data for Agricultural Drought Detection in Argentina. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 14, 6487-6500. http://doi.org/10.1109/JSTARS.2021.3084849.
Seneviratne, S.I., Corti, T., Davin, E.L., et al., 2010: Investigating soil moisture-climate interactions in a changing climate: A review, Earth-Sci. Rev., 99, 125–161. http://doi.org/10.1016/j.earscirev.2010.02.004.
Shiklomanov, I.A, 1993: World fresh water resources en Water in Crisis: A Guide to the Word's Fresh Water Resources. Oxford University Press, New York, USA, ISBN 9780195076288.
Sörensson A.A. y Berbery, H., 2015: A Note on Soil Moisture Memory and Interactions with Surface Climate for Different Vegetation Types in the La Plata Basin. Journal of Hydrometeorology, 16, 2, 716-729. doi: http://dx.doi.org/10.1175/JHM-D-14-0102.1.
Spennemann, P.C., Rivera, J.,A., Osman, M., et al., 2017: Assessment of seasonal soil moisture forecasts over Southern South America with emphasis on dry and wet events; American Meteorological Society; Journal Of Hydrometeorology; 18; 8; 8-2017; 2297-2311. http://doi.org/10.1175/JHM-D-17-0015.1.
Spennemann, P.C., Salvia, M., Ruscica, R.C., et al., 2018. Land-atmosphere interaction patterns in southeastern South America using satellite products and climate models, International Journal of Applied Earth Observation and Geoinformation, http://doi.org/10.1016/j.jag.2017.08.016.
Spennemann, P.C., Fernández-Long, M.E., Gattinoni, N.N., et al., 2020: Soil moisture evaluation over the Argentine Pampas using models, satellite estimations and in-situ measurements, Journal of Hydrology: Regional Studies, 31, 100723, http://doi.org/10.1016/j.ejrh.2020.100723.
Tapley, B.D., Bettadpur, S., Ries, J.C., et al., 2004: GRACE measurements of mass variability in the Earth System. Science, 305, 503–505.
Thibeault, M., Cáceres, J. M., Dadamia, D., et al., 2015: Spatial and temporal analysis of the Monte Buey SAOCOM and SMAP core site. IGARSS IEEE Int. Geosci. Remote Sens. Symp., Milan, Italia, pp. 969-971. http://doi.org/10.1109/IGARSS.2015.7325929.
Toreti, A., Bavera, D., Acosta Navarro, J., et al., 2023: Drought in South America April 2023, Publications Office of the European Union, Luxembourg. doi:10.2760/873366, JRC133788.
Ulaby, F., Moore, R., y Fung, A., 1982: Microwave Remote Sensing, Active and Passive: Radar Remote Sensing and Surface Scattering and Emission Theory, Vol. 2, Wesley Publishing Company, Inc., Reading, Massachusetts.
Van Loon, A.F., 2015: Hydrological drought explained. WIREs Water, 2: 359-392. https://doi.org/10.1002/wat2.1085.
Walker, J.P., Willgoose, G.R., y Kalma, J.D., 2002: Three-dimensional soil moisture profile retrieval by assimilation of near-surface measurements: Simplified Kalman filter covariance forecasting and field application, Water Resour. Res., 38(12), 1301. http://doi.org/10.1029/2002WR001545.
Wagner, W., Lemoine, G., y Rott, H., 1999: A method for estimating soil moisture from ERS scatterometer and soil data. Remote Sens. Environ., vol. 70, no. 2, pp. 191–207. http://doi.org/10.1016/S0034-4257(99)00036-X.
Whitworth-Hulse, J., Jobbágy, E.G., Borrás, L., et al., 2023: The expansion of rainfed grain production can generate spontaneous hydrological changes that reduce climate sensitivity. Agriculture, Ecosystems & Environment, 349, 108440, http://doi.org/10.1016/j.agee.2023.108440.
Xu, L., Chen, N., Zhang, X., Moradkhani, H., et al., 2021: In-situ and triple-collocation based evaluations of eight global root zone soil moisture products, Remote Sensing of Environment, 254, 112248. http://doi.org/10.1016/j.rse.2020.112248.
Zhang, N., Quiring, S., Ochsner, T., y Ford, T., 2017: Comparison of Three Methods for Vertical Extrapolation of Soil Moisture in Oklahoma, Vadose Zone J., 16, 1–19, http://doi.org/10.2136/vzj2017.04.0085.
Zhang, H., Wolfgang, K., Kollet, S., et al., 2018: Comparison of different assimilation methodologies of groundwater levels to improve predictions of root zone soil moisture with an integrated terrestrial system model, Advances in Water Resources, 111, 224-238, http://doi.org/10.1016/j.advwatres.2017.11.003.
Descargas
Publicado
Número
Sección
Licencia
Derechos de autor 2024 Romina Ruscica, Mercedes Salvia, Lucia Cappelletti, Homero Lozza, Manuel Pulido, Fabricio Matías Obregón, Esteban Jobbágy

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
Acorde a estos términos, el material se puede compartir (copiar y redistribuir en cualquier medio o formato) y adaptar (remezclar, transformar y crear a partir del material otra obra), siempre que a) se cite la autoría y la fuente original de su publicación (revista y URL de la obra), b) no se use para fines comerciales y c) se mantengan los mismos términos de la licencia.




















