¿Afecta el teletrabajo a la distribución de los ingresos laborales?

Datos empíricos de países sudamericanos

Autores/as

DOI:

https://doi.org/10.24215/18521649e045

Palabras clave:

teletrabajo, desigualdad, ingreso, regresiones RIF, sudamerica

Resumen

Este estudio tiene como objetivo estimar el impacto distributivo del teletrabajo sobre los ingresos laborales en algunos países de América del Sur, incluyendo Argentina, Brasil, Colombia, Ecuador, Perú y Uruguay. Utilizando microdatos de encuestas de hogares, nos centramos en el período 2021 en adelante para filtrar las variables de teletrabajo de los cambios temporales en el mercado laboral causados por el endurecimiento de las restricciones a la movilidad durante la pandemia. Mientras que en algunos países podemos medir el teletrabajo efectivo, en otros lo aproximamos basándonos en un conjunto de condiciones que son estándar en la literatura sobre teletrabajo. A continuación, utilizando un enfoque de regresión RIF (Recentered Influence Function), estimamos cómo una variación marginal en el porcentaje de teletrabajadores afecta no sólo a la media de los ingresos laborales, sino también a otras características de la distribución incondicional, como los cuantiles y algunos indicadores de desigualdad (índices de Gini y Atkinson). Este análisis nos permite captar los posibles efectos asimétricos del trabajo a distancia en toda la distribución incondicional de la renta. Los principales resultados muestran que una variación marginal en el porcentaje de trabajadores a distancia tiene un efecto positivo sobre la renta laboral media, pero con asimetrías en toda la distribución de la renta que podrían provocar un aumento de la desigualdad. De hecho, en la mayoría de los países, los trabajadores con ingresos altos se benefician más de una mayor penetración del teletrabajo. Además, este resultado también se ve respaldado por nuestras estimaciones del efecto del teletrabajo en los índices de desigualdad de Gini y Atkinson.

Biografía del autor/a

  • Juan Cruz Varvello, Universidad Austral, Argentina

    Licenciado en Economía por la Universidad Nacional de Rosario (UNR). Cursó y aprobó todas las materias de la Maestría en Economía Aplicada por la Universidad Austral (UA). Es Jefe de Trabajos Prácticos e Investigador del Departamento de Economía de la UA (dedicación exclusiva). Dicta clases de grado y posgrado y sus intereses de investigación se centran en el análisis teórico y empírico del mercado laboral, actividad económica regional, distribución del ingreso, emprendedurismo y sostenibilidad. También participa como investigador en la Fundación Banco Municipal de Rosario.

  • Ana Inés Navarro, Universidad Austral, Argentina
    Ana Inés Navarro is the Research Secretary at Austral University, Rosario Campus, Full Professor and Director of the Department of Economics and of the Master’s in Applied Economics at the same institution, and Full Professor of Microeconomics at UNR. She holds a PhD in Economics from the University of San Andrés, has completed postgraduate studies at the Torcuato Di Tella University, and holds a Bachelor’s Degree in Economics from UNR. She teaches undergraduate and graduate courses, and her research interests focus on applied economics, the labor market, regional economic activity, and Agtech ecosystems.  
  • Jorge Camusso, Universidad Austral, Argentina

    Licenciado en Economía por la Universidad Nacional de Rosario (UNR) y Magíster en Economía Aplicada por la Universidad Austral (UA). Actualmente está realizando el Doctorado en Matemática Aplicada y Computacional en la UA. Es Profesor Adjunto e Investigador del Departamento de Economía de la UA (dedicación exclusiva) y Profesor JTP en la UNR (dedicación simple). Dicta clases de grado y posgrado y sus intereses de investigación se centran en el análisis teórico y empírico del mercado laboral, actividad económica regional, distribución del ingreso, y econometría aplicada. Fue investigador en la Fundación Banco Municipal de Rosario, elaborando trabajos académicos e informes.

Referencias

Adams-Prassl, A., Boneva, T., Golin, M. y Rauh, C. (2020). Work that can be done from home: Evidence on variation within and across occupations and industries. Institute of Labor Economics Discussion Paper, 13374. https://doi.org/10.2139/ssrn.3631584

Albrieu, R. (2020). Evaluando las oportunidades y los límites del teletrabajo en Argentina en tiempos del COVID-19. Centro de Implementación de Políticas Públicas para la Equidad y el Crecimiento. https://www.cippec.org/publicacion/evaluando-las-oportunidades-y-los-limites-del-teletrabajo-en-argentina-en-tiempos-del-covid-19/

Alejo, J., Favata, F., Montes-Rojas, G. y Trombetta, M. (2021). Conditional vs unconditional quantile regression models: A guide to practitioners. Economia, 44(88), 76-93. https://doi.org/10.18800/economia.202102.004

Ariza, J. y Montes-Rojas, G. (2019). Decomposition methods for analyzing inequality changes in Latin America 2002–2014. Empirical Economics, 57, 2043-2078. https://doi.org/10.1007/s00181-018-1518-4

Battiston, D., Blanes, I., Vidal, J. y Kirchmaier, T. (2017). Is distance dead? Face-to-face communication and productivity in teams. Copenhagen Business School Discussion Paper, 1473. https://hdl.handle.net/10398/c8a819c8-ff0d-4099-8379-4478c9d393e7

Behrens, K., Kichko, S. y Thisse, J. (2021). Working from home: Too much of a good thing? Centre for Economic Policy Research Discussion Paper, 15669. https://cepr.org/publications/dp15669

Bloom, N., Liang, J., Roberts, J. y Ying, Z. J. (2015). Does working from home work? Evidence from a Chinese experiment. The Quarterly Journal of Economics, 130(1), 165-218. https://doi.org/10.1093/qje/qju032

Bonavida Foschiatti, C. y Gasparini, L. C. (2020). Asimetrías en la viabilidad del trabajo remoto: estimaciones e implicancias en tiempos de cuarentena. Económica, 66, e015. https://doi.org/10.24215/18521649e015

Bourdeau, S., Ollier-Malaterre, A. y Houlfort, N. (2019). Not all work–life policies are created equal: Career consequences of using enabling versus enclosing work–life policies. Academy of Management Review, 44(1), 172–193. https://doi.org/10.5465/amr.2016.0429

Camusso, J. E. y Navarro, A. I. (2024). Income risk asymmetries over Argentina’s business cycle. Revista de Análisis Económico, 39(1), 3-43. http://dx.doi.org/10.4067/S0718-88702024000100003

Chiou, L. y Tucker, C. (2020). Social distancing, internet access and inequality. National Bureau of Economic Research Working Paper, 26982. https://doi.org/10.3386/w26982

Clark, B., Chatterjee, K., Martin, A. y Davis, A. (2020). How commuting affects subjective wellbeing. Transportation, 47, 2777-2805. https://doi.org/10.1007/s11116-019-09983-9

Criscuolo, C., Gal, P., Leidecker, T., Losma, F. y Nicoletti, G. (2023). The role of telework for productivity during and post-COVID-19. Economics and Statistics, 519, 51-72. https://doi.org/10.24187/ecostat.2023.539.2097

de la Vega, P. (2021). El teletrabajo como mitigador de los impactos económicos de la pandemia de COVID-19 en Argentina [Documento de trabajo 282]. Centro de Estudios Distributivos, Laborales y Sociales.

Delaporte, I. y Pena, W. (2020). Working from home under Covid-19: Who is affected? Evidence from Latin American and Caribbean countries. Centre for Economic Policy Research COVID Economic Series, 14, 200-234. https://doi.org/10.13140/RG.2.2.30046.77126

Dingel, J. I. y Neiman, B. (2020). How many jobs can be done at home? Journal of Public Economics, 189, 104235. https://doi.org/10.1016/j.jpubeco.2020.104235

Emanuel, N. y Harrington, E. (2024). Working’ remotely? Selection, treatment, and market provision of remote work. American Economic Journal: Applied Economics, 16(4), 528–559. https://doi.org/10.1257/app.20230376

Firpo, S. P., Fortin, N. M. y Lemieux, T. (2018). Decomposing wage distributions using recentered influence function regressions. Econometrics, 6(2), 28. https://doi.org/10.3390/econometrics6020028

Firpo, S. y Pinto, C. (2016). Identification and estimation of distributional impacts of interventions using changes in inequality measures. Journal of Applied Econometrics, 31(3), 457-486. https://doi.org/10.1002/jae.2448

Firpo, S., Fortin, N. M. y Lemieux, T. (2009). Unconditional quantile regressions. Econometrica, 77(3), 953-973. http://dx.doi.org/10.3982/ECTA6822

Garrote Sanchez, D., Gomez Parra, N., Ozden, C., Rijkers, B., Viollaz, M. y Winkler, H. (2021). Who on earth can work from home? The World Bank Research Observer, 36(1), 67-100. https://doi.org/10.1093/wbro/lkab002

Gasparini, L., Cicowiez, M. y Sosa Escudero, W. (2012). Pobreza y Desigualdad en américa Latina: conceptos, herramientas y aplicaciones. Temas Grupo Editorial. http://sedici.unlp.edu.ar/handle/10915/65474

Glass, J. L. y Noonan, M. C. (2016). Telecommuting and earnings trajectories among American women and men 1989–2008. Social Forces, 95(1), 217–250. https://doi.org/10.1093/sf/sow034

Gottlieb, C., Grobovsek, J. y Poschke, M. (2020). Working from home across countries. Centre Interuniversitaire de Recherche en Économie Quantitative. https://ideas.repec.org/p/mtl/montec/07-2020.html

Gottlieb, C., Grobovšek, J., Poschke, M. y Saltiel, F. (2021). Working from home in developing countries. European Economic Review, 133, 103679. https://doi.org/10.1016/j.euroecorev.2021.103679

Hampel, F. R. (1968). Contributions to the theory of robust estimation. University of California.

Hampel, F. R. (1974). The Influence Curve and Its Role in Robust Estimation. Journal of the American Statistical, 69(346), 383-393. https://doi.org/10.1080/01621459.1974.10482962

Huber, P. J. y Ronchetti, E. M. (2009). Robust statistics. Wiley. https://doi.org/10.1002/9780470434697

International Labour Organization (2020). COVID-19: Guidance for labour statistics data collection. ILO.

Irlacher, M. y Koch, M. (2021). Working from home, wages, and regional inequality in the light of COVID-19. Jahrbücher für Nationalökonomie und Statistik, 241(3), 373-404. https://doi.org/10.1515/jbnst-2020-0030

Kahneman, D. y Krueger, A. (2006). Developments in the measurement of subjective well-being. Journal of Economic Perspectives, 20(1), 3-24. https://doi.org/10.1257/089533006776526030

Kahneman, D., Krueger, A. B., Schkade, D. A., Schwarz, N. y Stone, A. A. (2004). A survey method for characterizing daily life experience: The day reconstruction method. Science, 306(5702), 1776-1780. https://doi.org/10.1126/science.1103572

Lewandowski, P., Park, A., Hardy, W., Du, Y. y Wu, S. (2022). Technology, skills, and globalization: Explaining international differences in routine and nonroutine work using survey data. The World Bank Economic Review, 36(3), 687-708. https://doi.org/10.1093/wber/lhac005

Lombardo, C. y Martínez Correa, J. (2019). Convenio colectivo, sindicatos y dispersión salarial: evidencia de Argentina. Asociación Argentina de Economía Política Working Papers, 4164.

Maurizio, R. (2021). Desafíos y oportunidades del teletrabajo en América Latina y el Caribe. Organización Internacional del Trabajo. https://www.ilo.org/es/publications/desafios-y-oportunidades-del-teletrabajo-en-america-latina-y-el-caribe

Milasi, S., González-Vázquez, I. y Fernandez-Macias, E. (2020). Telework in the EU before and after the COVID-19: Where we were, where we head to. European Comission Science for Policy Brief.

Oswald, A. J., Proto, E. y Sgroi, D. (2015). Happiness and productivity. Journal of Labor Economics, 33(4), 789–822. https://doi.org/10.1086/681096

Pabilonia, S. W. y Vernon, V. (2022). Telework, wages, and time use in the United States. Review of Economics of the Household, 20, 687-732. https://doi.org/10.1007/s11150-022-09601-1

Palomino, J. C., Rodríguez, J. G. y Sebastian, R. (2020). Wage inequality and poverty effects of lockdown and social distancing in Europe. European Economic Review, 129, 103564. https://doi.org/10.1016/j.euroecorev.2020.103564

Rhee, H. (2008). Home-based telecommuting and commuting behavior. Journal of Urban Economics, 63(1), 198–216. https://doi.org/10.1016/j.jue.2007.01.007

Rios-Avila, F. (2020). Recentered influence functions (RIFs) in Stata: RIF regression and RIF decomposition. The Stata Journal, 20(1), 51-94. https://doi.org/10.1177/1536867X20909690

Rios-Avila, F. y Maroto, M. L. (2022). Moving beyond linear regression: Implementing and interpreting quantile regression models with fixed effects. Sociological Methods and Research, 53(2), 639-682. https://doi.org/10.1177/00491241211036165

Rockmann, K. W. y Pratt, M. G. (2015). Contagious offsite work and the lonely office: The unintended consequences of distributed work. Academy of Management Discoveries, 1(2), 150-164. https://doi.org/10.5465/amd.2014.0016

Saltiel, F. (2020). Who can work from home in developing countries. Institute of Labor Economics Discussion Paper, 13737. https://ssrn.com/abstract=3699854

Schteingart, D., Kejsefman, I. y Pesce, F. (2021). Evolución del trabajo remoto en Argentina desde la pandemia. Centro de Estudios Para la Producción.

Taskin, L. y Bridou, F- (2010). Telework: A challenge to knowledge transfer in organizations. International Journal of Human Resource Management, 21(13), 2503-2520. https://doi.org/10.1080/09585192.2010.516600

Touzet, C. (2023). Teleworking through the gender looking glass: Facts and gaps. OECD Publishing, 285. https://doi.org/10.1787/8aff1a74-en

Weller, J. (2020). La pandemia del COVID-19 y su efecto en las tendencias de los mercados laborales. Comisión Económica para América Latina y el Caribe. https://hdl.handle.net/11362/45759

Descargas

Publicado

2025-12-11

Número

Sección

Artículos

Cómo citar

Varvello, J. C., Navarro, A. I., & Camusso, J. (2025). ¿Afecta el teletrabajo a la distribución de los ingresos laborales? Datos empíricos de países sudamericanos. Económica, 71, 045. https://doi.org/10.24215/18521649e045