¿Afecta el teletrabajo a la distribución de los ingresos laborales?
Datos empíricos de países sudamericanos
DOI:
https://doi.org/10.24215/18521649e045Palabras clave:
teletrabajo, desigualdad, ingreso, regresiones RIF, sudamericaResumen
Este estudio tiene como objetivo estimar el impacto distributivo del teletrabajo sobre los ingresos laborales en algunos países de América del Sur, incluyendo Argentina, Brasil, Colombia, Ecuador, Perú y Uruguay. Utilizando microdatos de encuestas de hogares, nos centramos en el período 2021 en adelante para filtrar las variables de teletrabajo de los cambios temporales en el mercado laboral causados por el endurecimiento de las restricciones a la movilidad durante la pandemia. Mientras que en algunos países podemos medir el teletrabajo efectivo, en otros lo aproximamos basándonos en un conjunto de condiciones que son estándar en la literatura sobre teletrabajo. A continuación, utilizando un enfoque de regresión RIF (Recentered Influence Function), estimamos cómo una variación marginal en el porcentaje de teletrabajadores afecta no sólo a la media de los ingresos laborales, sino también a otras características de la distribución incondicional, como los cuantiles y algunos indicadores de desigualdad (índices de Gini y Atkinson). Este análisis nos permite captar los posibles efectos asimétricos del trabajo a distancia en toda la distribución incondicional de la renta. Los principales resultados muestran que una variación marginal en el porcentaje de trabajadores a distancia tiene un efecto positivo sobre la renta laboral media, pero con asimetrías en toda la distribución de la renta que podrían provocar un aumento de la desigualdad. De hecho, en la mayoría de los países, los trabajadores con ingresos altos se benefician más de una mayor penetración del teletrabajo. Además, este resultado también se ve respaldado por nuestras estimaciones del efecto del teletrabajo en los índices de desigualdad de Gini y Atkinson.
Referencias
Adams-Prassl, A., Boneva, T., Golin, M. y Rauh, C. (2020). Work that can be done from home: Evidence on variation within and across occupations and industries. Institute of Labor Economics Discussion Paper, 13374. https://doi.org/10.2139/ssrn.3631584
Albrieu, R. (2020). Evaluando las oportunidades y los límites del teletrabajo en Argentina en tiempos del COVID-19. Centro de Implementación de Políticas Públicas para la Equidad y el Crecimiento. https://www.cippec.org/publicacion/evaluando-las-oportunidades-y-los-limites-del-teletrabajo-en-argentina-en-tiempos-del-covid-19/
Alejo, J., Favata, F., Montes-Rojas, G. y Trombetta, M. (2021). Conditional vs unconditional quantile regression models: A guide to practitioners. Economia, 44(88), 76-93. https://doi.org/10.18800/economia.202102.004
Ariza, J. y Montes-Rojas, G. (2019). Decomposition methods for analyzing inequality changes in Latin America 2002–2014. Empirical Economics, 57, 2043-2078. https://doi.org/10.1007/s00181-018-1518-4
Battiston, D., Blanes, I., Vidal, J. y Kirchmaier, T. (2017). Is distance dead? Face-to-face communication and productivity in teams. Copenhagen Business School Discussion Paper, 1473. https://hdl.handle.net/10398/c8a819c8-ff0d-4099-8379-4478c9d393e7
Behrens, K., Kichko, S. y Thisse, J. (2021). Working from home: Too much of a good thing? Centre for Economic Policy Research Discussion Paper, 15669. https://cepr.org/publications/dp15669
Bloom, N., Liang, J., Roberts, J. y Ying, Z. J. (2015). Does working from home work? Evidence from a Chinese experiment. The Quarterly Journal of Economics, 130(1), 165-218. https://doi.org/10.1093/qje/qju032
Bonavida Foschiatti, C. y Gasparini, L. C. (2020). Asimetrías en la viabilidad del trabajo remoto: estimaciones e implicancias en tiempos de cuarentena. Económica, 66, e015. https://doi.org/10.24215/18521649e015
Bourdeau, S., Ollier-Malaterre, A. y Houlfort, N. (2019). Not all work–life policies are created equal: Career consequences of using enabling versus enclosing work–life policies. Academy of Management Review, 44(1), 172–193. https://doi.org/10.5465/amr.2016.0429
Camusso, J. E. y Navarro, A. I. (2024). Income risk asymmetries over Argentina’s business cycle. Revista de Análisis Económico, 39(1), 3-43. http://dx.doi.org/10.4067/S0718-88702024000100003
Chiou, L. y Tucker, C. (2020). Social distancing, internet access and inequality. National Bureau of Economic Research Working Paper, 26982. https://doi.org/10.3386/w26982
Clark, B., Chatterjee, K., Martin, A. y Davis, A. (2020). How commuting affects subjective wellbeing. Transportation, 47, 2777-2805. https://doi.org/10.1007/s11116-019-09983-9
Criscuolo, C., Gal, P., Leidecker, T., Losma, F. y Nicoletti, G. (2023). The role of telework for productivity during and post-COVID-19. Economics and Statistics, 519, 51-72. https://doi.org/10.24187/ecostat.2023.539.2097
de la Vega, P. (2021). El teletrabajo como mitigador de los impactos económicos de la pandemia de COVID-19 en Argentina [Documento de trabajo 282]. Centro de Estudios Distributivos, Laborales y Sociales.
Delaporte, I. y Pena, W. (2020). Working from home under Covid-19: Who is affected? Evidence from Latin American and Caribbean countries. Centre for Economic Policy Research COVID Economic Series, 14, 200-234. https://doi.org/10.13140/RG.2.2.30046.77126
Dingel, J. I. y Neiman, B. (2020). How many jobs can be done at home? Journal of Public Economics, 189, 104235. https://doi.org/10.1016/j.jpubeco.2020.104235
Emanuel, N. y Harrington, E. (2024). Working’ remotely? Selection, treatment, and market provision of remote work. American Economic Journal: Applied Economics, 16(4), 528–559. https://doi.org/10.1257/app.20230376
Firpo, S. P., Fortin, N. M. y Lemieux, T. (2018). Decomposing wage distributions using recentered influence function regressions. Econometrics, 6(2), 28. https://doi.org/10.3390/econometrics6020028
Firpo, S. y Pinto, C. (2016). Identification and estimation of distributional impacts of interventions using changes in inequality measures. Journal of Applied Econometrics, 31(3), 457-486. https://doi.org/10.1002/jae.2448
Firpo, S., Fortin, N. M. y Lemieux, T. (2009). Unconditional quantile regressions. Econometrica, 77(3), 953-973. http://dx.doi.org/10.3982/ECTA6822
Garrote Sanchez, D., Gomez Parra, N., Ozden, C., Rijkers, B., Viollaz, M. y Winkler, H. (2021). Who on earth can work from home? The World Bank Research Observer, 36(1), 67-100. https://doi.org/10.1093/wbro/lkab002
Gasparini, L., Cicowiez, M. y Sosa Escudero, W. (2012). Pobreza y Desigualdad en américa Latina: conceptos, herramientas y aplicaciones. Temas Grupo Editorial. http://sedici.unlp.edu.ar/handle/10915/65474
Glass, J. L. y Noonan, M. C. (2016). Telecommuting and earnings trajectories among American women and men 1989–2008. Social Forces, 95(1), 217–250. https://doi.org/10.1093/sf/sow034
Gottlieb, C., Grobovsek, J. y Poschke, M. (2020). Working from home across countries. Centre Interuniversitaire de Recherche en Économie Quantitative. https://ideas.repec.org/p/mtl/montec/07-2020.html
Gottlieb, C., Grobovšek, J., Poschke, M. y Saltiel, F. (2021). Working from home in developing countries. European Economic Review, 133, 103679. https://doi.org/10.1016/j.euroecorev.2021.103679
Hampel, F. R. (1968). Contributions to the theory of robust estimation. University of California.
Hampel, F. R. (1974). The Influence Curve and Its Role in Robust Estimation. Journal of the American Statistical, 69(346), 383-393. https://doi.org/10.1080/01621459.1974.10482962
Huber, P. J. y Ronchetti, E. M. (2009). Robust statistics. Wiley. https://doi.org/10.1002/9780470434697
International Labour Organization (2020). COVID-19: Guidance for labour statistics data collection. ILO.
Irlacher, M. y Koch, M. (2021). Working from home, wages, and regional inequality in the light of COVID-19. Jahrbücher für Nationalökonomie und Statistik, 241(3), 373-404. https://doi.org/10.1515/jbnst-2020-0030
Kahneman, D. y Krueger, A. (2006). Developments in the measurement of subjective well-being. Journal of Economic Perspectives, 20(1), 3-24. https://doi.org/10.1257/089533006776526030
Kahneman, D., Krueger, A. B., Schkade, D. A., Schwarz, N. y Stone, A. A. (2004). A survey method for characterizing daily life experience: The day reconstruction method. Science, 306(5702), 1776-1780. https://doi.org/10.1126/science.1103572
Lewandowski, P., Park, A., Hardy, W., Du, Y. y Wu, S. (2022). Technology, skills, and globalization: Explaining international differences in routine and nonroutine work using survey data. The World Bank Economic Review, 36(3), 687-708. https://doi.org/10.1093/wber/lhac005
Lombardo, C. y Martínez Correa, J. (2019). Convenio colectivo, sindicatos y dispersión salarial: evidencia de Argentina. Asociación Argentina de Economía Política Working Papers, 4164.
Maurizio, R. (2021). Desafíos y oportunidades del teletrabajo en América Latina y el Caribe. Organización Internacional del Trabajo. https://www.ilo.org/es/publications/desafios-y-oportunidades-del-teletrabajo-en-america-latina-y-el-caribe
Milasi, S., González-Vázquez, I. y Fernandez-Macias, E. (2020). Telework in the EU before and after the COVID-19: Where we were, where we head to. European Comission Science for Policy Brief.
Oswald, A. J., Proto, E. y Sgroi, D. (2015). Happiness and productivity. Journal of Labor Economics, 33(4), 789–822. https://doi.org/10.1086/681096
Pabilonia, S. W. y Vernon, V. (2022). Telework, wages, and time use in the United States. Review of Economics of the Household, 20, 687-732. https://doi.org/10.1007/s11150-022-09601-1
Palomino, J. C., Rodríguez, J. G. y Sebastian, R. (2020). Wage inequality and poverty effects of lockdown and social distancing in Europe. European Economic Review, 129, 103564. https://doi.org/10.1016/j.euroecorev.2020.103564
Rhee, H. (2008). Home-based telecommuting and commuting behavior. Journal of Urban Economics, 63(1), 198–216. https://doi.org/10.1016/j.jue.2007.01.007
Rios-Avila, F. (2020). Recentered influence functions (RIFs) in Stata: RIF regression and RIF decomposition. The Stata Journal, 20(1), 51-94. https://doi.org/10.1177/1536867X20909690
Rios-Avila, F. y Maroto, M. L. (2022). Moving beyond linear regression: Implementing and interpreting quantile regression models with fixed effects. Sociological Methods and Research, 53(2), 639-682. https://doi.org/10.1177/00491241211036165
Rockmann, K. W. y Pratt, M. G. (2015). Contagious offsite work and the lonely office: The unintended consequences of distributed work. Academy of Management Discoveries, 1(2), 150-164. https://doi.org/10.5465/amd.2014.0016
Saltiel, F. (2020). Who can work from home in developing countries. Institute of Labor Economics Discussion Paper, 13737. https://ssrn.com/abstract=3699854
Schteingart, D., Kejsefman, I. y Pesce, F. (2021). Evolución del trabajo remoto en Argentina desde la pandemia. Centro de Estudios Para la Producción.
Taskin, L. y Bridou, F- (2010). Telework: A challenge to knowledge transfer in organizations. International Journal of Human Resource Management, 21(13), 2503-2520. https://doi.org/10.1080/09585192.2010.516600
Touzet, C. (2023). Teleworking through the gender looking glass: Facts and gaps. OECD Publishing, 285. https://doi.org/10.1787/8aff1a74-en
Weller, J. (2020). La pandemia del COVID-19 y su efecto en las tendencias de los mercados laborales. Comisión Económica para América Latina y el Caribe. https://hdl.handle.net/11362/45759
Descargas
Publicado
Número
Sección
Licencia
Derechos de autor 2025 Juan Cruz Varvello, Ana Inés Navarro, Jorge Camusso

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
El material publicado en la revista se distribuye bajo una licencia de Creative Commons de Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0). Esta licencia obliga dar crédito de manera adecuada, brindar un enlace a la licencia, e indicar si se han realizado cambios; no permite hacer uso comercial de la obra; y si se remezclara, transformara o creara otro material a partir de la obra, no permite distribuir esa modificación.




























