WRF-SFIRE: Análisis de rendimiento y optimización de recursos en ambientes HPC

Authors

  • Rodolfo Alejandro Schmidt Universidad Empresarial Siglo 21, Argentina
  • Natalia Magris Universidad Empresarial Siglo 21, Argentina
  • Eduardo Piray Universidad Empresarial Siglo 21, Argentina
  • Miguel Mendez-Garabetti Universidad Empresarial Siglo 21, Argentina

Keywords:

WRF-SFIRE, Performance, performance improvement, parallel architectures, HPC

Abstract

The WRF-SFIRE model has become a valuable tool for wildfire prediction worldwide. However, its performance in parallel environments can be affected by the complexity of the model and resource limitations. This study evaluates the model’s performance in parallel environments and proposes optimization strategies to improve its efficiency and resource management/utilization. Representative cases will be conducted to assess the model’s performance with different software and hardware configurations, including CPU/GPU. The results of this study can be useful for enhancing wildfire prediction capabilities and resource management efficiency in emergency situations.

Downloads

Published

2023-10-12

Issue

Section

EST - Concurso de Trabajos Estudiantiles

How to Cite

Schmidt, R. A., Magris, N., Piray, E., & Mendez-Garabetti, M. (2023). WRF-SFIRE: Análisis de rendimiento y optimización de recursos en ambientes HPC. JAIIO, Jornadas Argentinas De Informática, 9(6), 103-108. https://revistas.unlp.edu.ar/JAIIO/article/view/18194