Quantum QSAR for drug discovery
Keywords:
QSAR, classification, drug discovery, support vector machines, quantum kernelAbstract
Quantitative Structure-Activity Relationship (QSAR) modeling is key in drug discovery, but classical methods face limitations when handling high-dimensional data and capturing complex molecular interactions. This research proposes enhancing QSAR techniques through Quantum Support Vector Machines (QSVMs), which leverage quantum computing principles to process information in Hilbert spaces. By using quantum data encoding and quantum kernel functions, we aim to develop more accurate and efficient predictive models.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Alejandro Giraldo, Daniel Ruiz, Mariano Caruso, Guido Bellomo

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Acorde a estos términos, el material se puede compartir (copiar y redistribuir en cualquier medio o formato) y adaptar (remezclar, transformar y crear a partir del material otra obra), siempre que a) se cite la autoría y la fuente original de su publicación (revista y URL de la obra), b) no se use para fines comerciales y c) se mantengan los mismos términos de la licencia.











