Teamwork Quality Prediction Using Speech-Based Features
Keywords:
teamwork quality prediction, data annotationAbstract
This paper describes a novel protocol for annotating teamwork quality and related variables, based only on the speech signal. Our protocol was designed to annotate a Spanish version of the Objects Games corpus, a publicly available corpus that contains dialogues of people playing a collaborative computer game. The corpus was annotated by 4 raters, who achieved an Intr- aclass Correlation Coefficient of 0.64 for the main teamwork quality metric. Using the resulting annotations, we developed a system for automatic prediction of the average teamwork quality across raters using features extracted from the conversations, reaching a coefficient of determination, R2 of 0.56. This result suggests that automatic prediction of teamwork quality from the speech signal of the teammates is a feasible task.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Martin Meza, Lara Gauder, Lautaro Estienne, Ricardo Barchi, Agustín Gravano, Pablo Riera, Luciana Ferrer

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Acorde a estos términos, el material se puede compartir (copiar y redistribuir en cualquier medio o formato) y adaptar (remezclar, transformar y crear a partir del material otra obra), siempre que a) se cite la autoría y la fuente original de su publicación (revista y URL de la obra), b) no se use para fines comerciales y c) se mantengan los mismos términos de la licencia.











