Time Discretization vs. State Quantification: Activity Homogeneity and Discontinuities
Keywords:
ordinary differential equations, numeric integration methods, QSS methods, activityAbstract
In this work, we define the concept of activity homogeneity for the solutions of Ordinary Differential Equations (ODEs). This indicator quantifies the similarity in the rate of change of the different variables in the system over time. We also show that this measure provides useful criteria for determining whether it is more convenient to use classic numerical integration methods based on time discretization or state quantification based methods. In addition, we extend the analysis to discontinuous systems and the effects of the presence of events in each type of numerical integration scheme. Finally, we apply the developed concepts to two case studies: an advection - diffusion - reaction system (corresponding to a continuous model) and a neural network (corresponding to a hybrid model). We compare the theoretical results with those obtained from simulations of both systems using different numerical integration methods.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Mariana Bergonzi, Rodrigo Castro, Ernesto Kofman

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Acorde a estos términos, el material se puede compartir (copiar y redistribuir en cualquier medio o formato) y adaptar (remezclar, transformar y crear a partir del material otra obra), siempre que a) se cite la autoría y la fuente original de su publicación (revista y URL de la obra), b) no se use para fines comerciales y c) se mantengan los mismos términos de la licencia.











