Enamel types and their relationship to biomechanics

Authors

  • Andrea TANEVITCH Facultad de Odontología. Universidad Nacional de La Plata.
  • Susana BATISTA Facultad de Odontología. Universidad Nacional de La Plata
  • Graciela DURSO Facultad de Odontología. Universidad Nacional de La Plata
  • Adrián ABAL Facultad de Odontología. Universidad Nacional de La Plata
  • Cristina ANSELMINO Facultad de Odontología. Universidad Nacional de La Plata
  • Lila LICATA Facultad de Odontología. Universidad Nacional de La Plata

Abstract

The aim of this work was to establish the relationship existing between the distribution of enamel types in human permanent teeth and their biomechanical adaptation. For this purpose we considered the classification proposed by Koenigswald about hierarchical levels of complexity in the structure of mammalian enamel, which has not yet been applied to the study of human enamel. For sample preparation we used Martin and Wahlert's technique (1999), already tested for the analysis of non human mammalian enamel types. The enamel types found were the following: radial enamel, enamel with Hunter Schreger bands and irregular enamel. These types were found in all the teeth with a different distribution in each tooth group according to the biomechanical exigencies to which each group is exposed. Since teeth concentrate masticatory forces in little areas, the enamel types have to combine in such a way that they can resist wear and fractures. We conclude that the presence of various enamels types and their combination constitute a specialization of enamel microstructure capable of responding to the varied biomechanical demand of the different tooth groups.

Key Words: enamel, microstructure, biomechanics.

Downloads

Download data is not yet available.

References

Boyde A, Fortelius M. (1986) Development, structure and function of rhinoceros enamel. Zoological Journal of the Linnean Society; 87:181-214.

Dos Santos, José (1987) Oclusión. Principios y conceptos. Editorial Mundi, Buenos Aires, Argentina, pp.164.

Gómez de Ferraris ME, Campos Muñoz A. (2002) Histología y Embriología Bucodental. Ed. Médica Panamericana,Madrid,España.

Jiang Y, Spears IR, Macho GA. (2003)Aninvestigation into fractured surfaces of enamel ofmodern human teeth: a combinedSEMandcomputer visualization study.ArchsOralBiol. 48: 449-457.1.

Koenigswald W, Clemens W. (1992) Levels of complexity in the microstructure of mammalian enamel, and theirapplication in studies of systematics. ScanningMicroscopy; 6:195- 218.

Koenigswald W, Sander P. (1997) Glossary of terms used for enamel microstructures. En: Tooth enamel microstructure,Koenigswald W,SanderP. (eds) Balkema, Rotterdam,PaísesBajos,pp267-297.

Maas MC. (1991) Enamel structure and microwear: an experimental study of the response of enamel to shearing force.Am. J PhysAnthropol; 85: 31-49.

Martin T, Wahlert J. (1999) Preparingteeth for viewingwith scanning electronmicroscope (SEM). http://research.amnh.org/vertpaleo/enamel/prep.html [Consulta: 6-1-2007]

Rensberger J. (1997) Mechanical adaptation in enamel. En:Tooth enamelmicrostructure.Koenigswald W, Sander P. (eds) Balkema,Rotterdam, PaísesBajos,pp. 237-257.

Rensberger, J, Koenigswald, WV (1980) Functional andfilogenetic interpretation of enamelmicrostructure in rhinoceroses.Paleobiology; 6: 477-495.1.

Shimizu D, Macho GA, Spears IR. (2005) Effect of prism orientation and loading direction on contact stresses in prismatic enamel of primates: implications for interpreting wear patterns. Am. J Phys Anthropol; 126: 427-34.

How to Cite

TANEVITCH, A., BATISTA, S., DURSO, G., ABAL, A., ANSELMINO, C., & LICATA, L. (2014). Enamel types and their relationship to biomechanics. Revista Ciencias Morfológicas, 10(1). Retrieved from https://revistas.unlp.edu.ar/Morfol/article/view/937

Issue

Section

Trabajos Originales

Most read articles by the same author(s)