El papel de la morfología oocitaria en la determinación de la competencia embrionaria temprana
Resumo
El complejo proceso del desarrollo, tanto del embrión, del feto como de la placenta, comienza en las primeras fases de la gestación, durante la preimplantación. Sin embargo, el destino del embrión de mamíferos está marcado celular y molecularmente, por una red de señales génicas claves durante el desarrollo del oocito, cuando éste adquiere la competencia para el desarrollo embrionario. Esta nueva progenie se relacionará directamente con la morfogénesis normal del oocito, proceso íntimamente ligado al mapa molecular específico de expresión de proteínas y genes, que dirigen y regulan el desarrollo morfológico normal del oocito. Nuevos marcadores génicos de competencia oocito-embrionaria aportarán la posibilidad de monitoreo de las causas de bajas tasas de embarazo, de la disminución de la fertilidad, de aborto o pérdida temprana de la gestació o de anomalías embrionarias, ocasionadas por múltiples factores, uno de ellos la ingesta materna de alcohol. Esta revisión pretende brindar conocimiento básico acerca del desarrollo morfológico clásico del oocito y del embrión preimplantativo, y acercar un nuevo concepto, amplio y complejo, sobre la relación entre el aspecto morfológico clásico del oocito y del embrión con la “morfología molecular” de la gameta femenina, que determinan la competencia y el destino del embrión en desarrollo. Así, la vinculación entre la morfología oocitaria, la competencia nuclear y marcadores moleculares específicos podrían constituirse en útiles y esenciales herramientas para la determinación del destino embrionario, y con ello, potenciales elementos para el tratamiento de la pérdida temprana de la gestación.
Downloads
Referências
Adhikari D, Liu K (2014) The regulation of maturation promoting factor during prophase I arrest and meiotic entry in mammalian oocytes. Mol Cell Endocrinol 382(1): 480-487.
Adjaye J, Huntriss J, Herwig R BenKahla A, Brink TC, Wierling C, Hultschig C, Groth D, Yaspo ML, Picton HM, Gosden RG, Lehrach H (2005) Primary differentiation in the human blastocyst: comparative molecular portraits of inner cell mass and trophectoderm cells. Stem Cells 23: 1513–1524.
Alison MR, Sarraf CE (1992) Apoptosis: a gene-directed programme of cell death. J.R. Coll. Physicians Lond 26: 25-35.
Avilion AA, Nicolis SK, Pevny LH, Perez L, Vivian N, Lovell-Badge R (2003) Multipotent cell lineages in early mouse development depend on SOX2 function. Genes Dev 17: 126-140.
Babaie Y, Herwig R, Greber B, Brink TC, Wruck W, Groth D, Lehrach H, Burdon T, Adjaye J (2007) Analysis of OCT4 dependent transcriptional networks regulating self renewal and pluripotency in human embryonic stem cells. Stem Cells 25: 500–510.
Balaban B, Ata B, Isiklar A, Yanki K, Urman B (2008) Severe cyotplasmic abnormalities of the oocyte decrease cryosurvival and subsequent embryonic development of cryopreserved embryos. Hum Reprod 23: 1778-1785.
Balakier H, Bouman D, Sojecki A, Librach C, Squire JA (2002) Morphological and cytogenetic analysis of human giant oocytes and giant embryos. Hum Reprod 17(9): 2394-2401.
Battaglia DE, Goodwin P, Klein NA, Soules MR (1996) Influence of maternal age on meiotic spindle assembly in oocytes from naturally cycling women. Hum Reprod 11: 2217-2222.
Biggers JD, Baltz JM, Lechene C (1991) Ions and preimplantation development. En: Animal Applications of Research in Mammalian Development. Cold Spring Harbor, New York: Cold Spring Harbor Laboratory Press, pp 121-146.
Bouniol-Baly C, Hamraoui L, Guibert J, Beaujean N, Szöllösi MS, Debey P (1999) Differential transcriptional activity associated with chromatin configuration in fully grown mouse germinal vesicle oocytes. Biol Reprod 60: 580-587.
Bultman SJ, Gebuhr TC, Pan H, Svoboda P, Schultz RM, Magnuson T (2006) Maternal BRG1 regulates zygotic genome activation in the mouse. Genes Dev 20: 1744–1754.
Burns KH, Viveiros MM, Ren Y, Wang P, DeMayo FJ, Frail DE, Eppig JJ, Matzuk MM (2003) Roles of NPM2 in chromatin and nucleolar organization in oocytes and embryos. Science 300: 633-636.
Can A, Semiz O, Cinar O (2003) Centrosome and microtubule dynamics during early stages of meiosis in mouse oocytes. Mol Hum Reprod 9: 749-756.
Capalbo A, Bono S, Spizzichino L, Biricik A, Baldi M, Colamaria S, Rienzi L, Fiorentino F (2013) Sequential comprehensive chromosome analysis on polar bodies, blastomeres and trophoblast: insights into female meiotic errors and chromosomal segregation in the preimplantation window of embryo development. Hum Reprod 28: 509-518.
Cavaleri F, Scholer H (2005) Molecular facets of pluripotency. En: Stem Cells. Lanza R, Gearhart J, Hogan B, Melton D, Pedersen R, Thompson J, West M (eds) Elsevier Academic Press, Amsterdam, pp. 27–44.
Cebral E, Lasserre A, Faletti AB, Gimeno MAF (1998) Response to ovulatory induction following moderate chronic ethanol administration in mice. Med Sci Res 26: 29-31.
Cebral E, Lasserre A, Motta A, Gimeno MAF (1998) Mouse oocyte quality and prostaglandin synthesis by cumulus oocyte complex after moderate chronic ethanol intake. Prost Leuk Ess Fatty Ac 58(5): 381-387.
Cebral E, Motta A, Gimeno MA (1999) Low chronic ethanol consumption affects the ovulation and PGE synthesis by the cumulus cell masses, in mice. Prost Leuk Ess Ac Fatty 60 (2): 95-100.
Cebral E, Rettori V, Gimeno MAF (2001) Impact of chronic low-dose alcohol ingestion during sexual maturation of female mice on in-vitro and in-vivo embryo development. Reprod Toxicol 15: 123-129.
Cebral E, Lasserre A, Rettori V, Gimeno MAF (1997) Impaired mouse fertilization by low chronic alcohol treatment. Alcohol Alcohol 32(5): 563-572.
Cebral E, Lasserre A, RettoriV, Gimeno MAF (2000) Alterations in preimplantation in-vivo development after preconceptional chronic moderate alcohol consumption, in female mice. Alcohol Alcohol 35(4): 336-343.
Clapier CR, Cairns BR (2009) The biology of chromatin remodeling complexes. Ann Rev Biochem 78: 273-304.
Czechanski A, Byers C, Greenstein I, Schrode N, Donahue LR, Hadjantonakis AK, Reinholdt LG (2014) Derivation and characterization of mouse embryonic stem cells from permissive and nonpermissive strains. Nat Protoc 9(3): 559-574.
David Keefe MD, Molly Kumar MD, Keri Kalmbach MS (2015) Oocyte competency is the key to embryo potential. Fert Ster 103(2): 317-322.
De Leon V, Johnson A, Bachvarova R (1983) Half-lives and relative amounts of stored and polysomal ribosomes and poly(A)+ RNA in mouse oocytes. Dev Biol 98: 400-408.
De Santis L, Cino I, Rabellotti E, Calzi F, Persico P, Borini A, Coticchio G (2005) Polar body morphology and spindle imaging as predictors of oocyte quality. Reprod Biomed Online 11(1): 36-42.
De Sutter P, Dozortsev D, Qian C, Dhont M (1996) Oocyte morphology does not correlate with fertilization rate and embryo quality after intracytoplasmic sperm injection. Hum Reprod 11: 595-597.
Debey P, Szollosi MS, Szollosi D, Vautier D, Girousse A, Besombes D. (1993) Competent mouse oocytes isolated from antral follicles exhibit different chromatin organization and follow different maturation dynamics. Mol Reprod Dev 36: 59-74.
Derijck AA, van der Heijden GW, Giele M, Philippens ME, van Bavel CC, de Boer P (2006) GammaH2AX signalling during sperm chromatin remodelling in the mouse zygote. DNA Repair (Amst.) 5: 959-971.
Downs SM (1993) Purine control of mouse oocyte maturation: evidence that nonmetabolized hypoxanthine maintains meiotic arrest. Mol Reprod Dev 35(1): 82-94.
Ebner T, Yaman C, Moser M, Sommergruber M, Feichtinger O, Tews G (2000) Prognostic value of first polar body morphology on fertilization rate and embryo quality in intracytoplasmic sperm injection. Hum Reprod 15: 427-430.
Ebner T, Moser M, Sommergruber M, Yaman C, Pfleger U, Tews G (2002) First polar body morphology and blastocyst formation rate in ICSI patients. Hum Reprod 17: 2415-2418.
Ebner T, Moser M, Sommergruber M, Tews G (2003) Selection based on morphological assessment of oocytes and embryos at different stages of preimplantation development: a review. Hum Reprod 9: 251-262.
Ebner T, Moser M, Sommergruber M, Puchner M, Wiesinger R, Tews G (2003) Developmental competence of oovytes showing increased cytoplasmic viscosity. Hum Reprod 18: 1294-1298.
Ebner T, Moser M, Sommergruber M, Gaiswinkler U, Shebl O, Jesacher K, Tews G (2005) Occurence and developmental consequences of vacuoles throughout preimplantation development. Fertil Steril 83(6): 1635-1640.
Eichenlaub-Ritter U, Schmiady H, Kentenich H, Soewarto D (1995) Recurrent failure in polar body formation and premature chromosome condensation in oocytes from a human patient: indicators of asynchrony in nuclear and cytoplasmic maturation. Hum Reprod 9: 2343-2349.
Eppig JJ, Schultz RM, O'Brien M, Chesnel F (1994) Relationship between the developmental programs controlling nuclear and cytoplasmic maturation of mouse oocytes. Dev Biol 164: 1-9.
Fleming TP, McConnell J, Johnson MH, Stevenson BR (1989) Development of tight junctions de novo in the mouse early embryo: Control of assembly of the tight junction-specific protein, ZO-1. J Cell Biol 108(4): 1407-1418.
Foygel K, Choi B, Jun S, Leong D, Lee A, Wong C, Zuo E, Eckart M, Reijo Pera R, Wong W Yao MW (2008) A novel and critical role for Oct4 as a regulator of the maternal-embryonic transition. PLoS One 3: e4109.
Garagna S (2009) Role of Oct-4 during acquisition of developmental competence in mouse oocyte. Reprod BioMed Online 19 Suppl. 3: 57-62.
Gardiner CS, Williams JS, Menino ARJr (1990a) Sodium/potassium adenosine triphosphatase a- and b-subunit and a-subunit mRNA levels during mouse embryo develompent in vitro. Biol Reprod 43 (5): 788-794.
Gordo AC, Rodrigues P, Kurokawa M, Jellerette T, Exley GE, Warner C, Fissore RA (2002) Intracellular calcium oscillations signal apoptosis rather than activation in in vitro aged mouse eggs. Biol Reprod 66: 1828-1837.
Hamatani T, Carter MG, Sharov AA, Ko MS (2004a) Dynamics of global gene expression changes during mouse preimplantation development. Dev. Cell 6: 117-131.
Hartshorne GM, Lyrakou S, Hamoda H, Oloto E, Ghafari F (2009) Oogenesis and cell death in human prenatal ovaries: what are the criteria for oocyte selection? Mol Hum Reprod 15: 805-819.
Hassan-Ali H1, Hisham-Saleh A, El-Gezeiry D, Baghdady I, Ismaeil I, Mandelbaum J (1998) Perivitelline space granularity: a sign of human menopausal gonadotrophin overdose in intracytoplasmic sperm injection. Hum Reprod. 13(12): 3425-3430.
Hinrichs K, Williams K (1997) Relationships among oocyte-cumulus morphology, follicular atresia, initial chromatin configuration, and oocyte meiotic competence in the horse. Biol Reprod 57: 377-384.
Howe K, FitzHarris G (2013) Recent insights into spindle function in mammalian oocytes and early embryos. Biol Reprod 89: 71, 1-9.
Inoue A, Nakajima R, Nagata M, Aoki F (2008) Contribution of the oocyte nucleus and cytoplasm to the determination of meiotic and developmental competence in mice. Hum Reprod 23: 1377-1384.
Johnson MH, McConnell JML (2004) Lineage allocation and cell polarity during mouse embryogenesis. Semin Cell Dev Biol 15(5): 583-597.
Kageyama S, Liu H, Kaneko N, Ooga M, Nagata M, Aoki F (2007) Alterations in epigenetic modifications during oocyte growth in mice. Reproduction 133: 85-94.
Kahraman S, Yakin K, Donmez E, Samli H, Bahce M, Cengiz G, Sertyel S, Samli M, Imirzahoglu M (2000) Relatonship between granular cytoplasm of oocytes and pregnancy outcome following intracytoplasmic sperm injection. Hum Reprod 15: 2390-2393.
Kaufman MH (1983). Early Mammalian Development: Parthenogenetic Studies. Cambridge Univ. Press. London y New York.
Kaufman MH (1997) The teratogenic effects of alcohol following exposure during pregnancy, and its influence on the chromosome constitution of the pre-ovulatory egg. Alcohol Alcohol. 32(2): 113-128.
Kaufman MH, Bard JBL (1999) The anatomical basis of mouse development. Edinburgh, United Kingdom, Academic Press.
Keefe D, Tran P, Pellegrini C, Oldenbourg R (1997) Polarized light microscopy and digital image processing identify a multilaminar structure of the hamster zona pellucida. Hum Reprod 12: 1250–1252.
Kikuchi K,Naito K, Noguchi J, KanekoH, Tojo H (2002) Maturation/M-phase promoting factor regulates aging of porcine oocytes matured in vitro. Cloning Stem Cells 4: 211-222.
Lasiene K, Vitkus A, Valanciūte A, Lasys V (2009) Morphological criteria of oocyte quality. Medicina (Kaunas). 45(7): 509-515.
Lei Li, Ping Zheng, Jurrien D (2010) Maternal control of early mouse development Dev 137: 859-870.
Levasseur DN, Wang J, Dorschner MO, Stamatoyannopoulos JA, Orkin SH (2008) Oct-4 dependence of chromatin structure within the extended Nanog locus in ES cells. Genes Dev 22: 575-580.
Liang XW, Zhu JQ, Miao Y, Liu J, Wei L, Lu S, Hou Y, Schatten H, Lu K, Sun Q (2008) Loss of methylation imprint of Snrpn in postovulatory aging mouse oocyte. Biochem Biophys Res Com 371: 16-21.
Liu H, Aoki F (2002) Transcriptional activity associated with meiotic competence in fully grown mouse GV oocytes. Zygote 10: 327-332.
Longo F, Garagna S, Merico V, Orlandini G, Gatti R, Scandroglio R, Redi CA, Zuccotti M (2003) Nuclear localization of NORs and centromeres in mouse oocytes during folliculogenesis. Mol Reprod Dev 66: 279-290.
Lord T, Aitken RJ (2013) Oxidative stress and ageing of the post-ovulatory oocyte. Reproduction 146: R217-R227.
Lord T, Nixon B, Jones KT, Aitken RJ (2013) Melatonin prevents postovulatory oocyte aging in the mouse and extends the window for optimal fertilization in vitro. Biol Reprod 88: 1-9.
Loutradis D, Drakakis M, Kallianidis K, Milingos S, Michalas S (1999) Oocytes morphology correlates with embryo quality and pregnancy rate alter intracytoplasmatic sperm injection. Fertil Steril 72: 240- 244.
Ma W, Zhang D, Hou Y, Li Y, Sun Q, Sun X, Wang W (2005) Reduced expression of MAD2, BCL2, and MAP kinase activity in pig oocytes after in vitro aging are associated with defects in sister chromatid segregation during meiosis II and embryo fragmentation after activation. Biol Reprod 72: 373-383.
Meriano JS, Alexis J, Visram-Zaver S, Crz M, Casper RF (2001) Tracking of oocyte dysmorphisms for ICSI may prove relevant to the outcome in subsequent patient cycles. Hum Reprod 16: 2118-2123.
Minami N, Suzuki T, Tsukamoto S (2007) Zygotic gene activation and maternal factors in mammals. J Reprod Develop 53: 707–715.
Miyara F, Migne C, Dumont-Hassan M, Le Meur A, Cohen-Bacrie P, Aubriot F, Glissant A, Nathan C, Douard S, Stanovici A Debey P (2003) Chromatin configuration and transcriptional control in human and mouse oocytes. Mol Reprod Dev 64: 458-470.
Motosugi N, Bauer T, Polanski Z, Solter D, Hiiragi T (2005) Polarity of the mouse embryo is established at blastocyst and is not prepatterned. Genes Dev 19(9): 1801-1892.
Nakamura T, Arai Y, Umehara H, Masuhara M, Kimura T, Taniguchi H, Sekimoto T, Ikawa M, Yoneda Y, Okabe M, Tanaka S, Shiota K, Nakano T (2007) PGC7/Stella protects against DNA demethylation in early embryogenesis. Nat Cell Biol 9: 64-71.
Otsuki J, Okada A, Morimoto K, Nagai Y, Kubo H (2004) The relationship between pregancy outcome and smooth endoplasmic reticulum clusters in MII human oocytes. Hum Reprod 19: 1591-1597.
Otsuki J, Nagai Y, Chiba K (2007) Lipofuscin bodies in human oocytes as an indicator of oocyte quality. J Assisted Reprod Genet 24: 263-270.
Payne D, Flaherty SP, Barry MF, Matthews CD (1997) Preliminary observations on polar body extrusion and pronuclear formation in human oocytes using time-lapse video cinematography. Hum Reprod 12(3): 532-541.
Pelletier C, Keefe DL, Trimarchi JR (2004) Noninvasive polarized light microscopy quantitatively distinguishes the multilaminar structureof the zona pellucida of living human eggs and embryos. Fertil Steril 81: 850–856.
Pickering SJ, Johnson MH, Braude PR, Houliston E (1988) Cytoskeletal organization in fresh, aged and spontaneously activated human oocytes. Human Reprod 3: 978-989.
Pratt HPM (1987) Isolation, culture and manipulation of pre-implantation mouse embryos. En: Mammalian development a practical aproach. Monk M. (Ed). Oxford, IRL Press, pp 13-42.
Pratt HPM, Ziomek CA, Reeve WJD, Johnson MH (1982) Compaction of the mouse embryo: An analysis of its components. J Embryol Exp Morphol 70: 113-132.
Racki WJ, Richter JD (2006) CPEB controls oocyte growth and follicle development in the mouse. Development 133: 4527-4537.
Rama Raju GA, Prakash GJ, Krishna KM, Madan K (2007) Meiotic spindle and zona pellucida characteristics as predictors of embryonic development: a preliminary study using PolScope imaging. Reprod Biomed Online 14: 166–174.
Rienzi L, Ubaldi FM, Iacobelli M, Minasi MG, Romano S, Ferrero S, Sapienza F, Baroni E, Litwicka K, Greco E (2008) Significance of metaphase II human oocyte morphology on ICSI outcome. Fertil Steril 90: 1692-1700.
Rosenbusch B, Schneider M, Gläser B, Brucker C (2002) Cytogenetic analysis of giant oocytes and zygotes to assess their relevance for the development of digynic triploidy. Hum Reprod. 17(9): 2388-2393.
Saiz N, Plusa B (2013) Early cell fate decisions in the mouse embryo. Reprod 145(3): 65-80.
Santos F, Hendrich B, Reik W, Dean W (2002) Dynamic reprogramming of DNA methylation in the early mouse embryo. Dev Biol 241: 172-182.
Sasaki H (2010) Mechanisms of trophectoderm fate specification in preimplantation mouse development. Dev Growth Differ 52(3): 263-273.
Schultz GA (1986) Utilization of genetic information in the preimplantation mouse embryo. En: Experimental approaches to mammalian preimplantation development. J Rossant R. A. Pedersen (Eds). New York, Cambridge University Press, pp 239-266.
Schultz RM (2002) The molecular foundations of the maternal to zygotic transition in the preimplantation embryo. Hum Reprod Update 8: 323-331.
Serhal PF, Ranieri DM, Kinis A, Marchant S, Davies M, Khadum IM (1997) Oocyte morphology predicts outcome of intracytoplasmic sperm injection. Hum Reprod 12: 1267-1270.
Shiina Y, Kaneda M, Matsuyama K, Tanaka K, Hiroi M, Doi K (1993) Role of the extracellular Ca2+ on the intracellular Ca2+ changes in fertilized and activated mouse oocytes. J Reprod Fert 97: 143-150.
Shuhaibar LC, Egbert JR, Norris RP, Lampe PD, Nikolaev VO, Thunemann M, Wen L, Feil R, Jaffe LA (2015) Intercellular signaling via cyclic GMP diffusion through gap junctions restarts meiosis in mouse ovarian follicles. Proc Natl Acad Sci U S A 112(17): 5527-5532.
Soewarto D, Schmiady H, Eichenlaub-Ritter U (1995) Consequences of non-extrusion of the first polar body and control of the sequential segregation of homologues and chromatids in mammalian oocytes. Hum Reprod 9: 2350-2360.
Sui H, Liu Y, Miao D, Yuan J, Qiao T, Luo M, Tan J (2005) Configurations of germinal Vehicle (GV) chromatin in the goat differ from those of other species. Mol Reprod Dev 71: 227-236.
Surani MAH, Reik W, Norris ML, Barton SC (1986) Influence of germline modifications of homologous chromosomes on mouse development. J Embryol Exp Morphol (Suppl.) 97: 123-136.
Swann K, Ozil JP (1994) Dynamics of the calcium signal that triggers mammalian egg activation. Internat Reviews Cytol 152: 183-222.
Takai Y, Matikainen T, Juriscova A, Kim MR, Trbovich AM, Fujita E, Nakagawa T, Lemmers B, Flavell RA, Hakem R Momoi T, Yuan J, Tilly JL, Perez GI (2007) Caspase-12 compensates for lack of caspase-2 and caspase-3 in female germ cells. Apoptosis 12: 791-800.
Takase K, Ishikawa M, Hoshiai H (1995) Apoptosis in the degeneration process of unfertilized mouse ova. Tohoku J Exp Med 175: 69-76.
Tarin JJ, Perez-Albala S, Aquilar A, Minarro HC, Cano A (1999) Long-term effects of postovulatory aging of mouse oocytes on offspring: a two-generational study. Biol Reprod 61: 1347-1355.
Tatone C, Emidio GD, Barbaro R, Vento M, Ciriminna R, Artini PG (2011) Effects of reproductive aging and postovulatory aging on the maintenance of biological competence after oocyte vitrification: insights from the mouse model. Theriogenol 76: 864-873.
Ten J, Mendiola J, Vioque J, Bernabeu R (2007) Donor oocyte dysmorphisms and their influence on fertilization and embryo quality. Reprod Biomed On line 14: 40-48.
Tiwari M, Prasad S, Tripathi A, Pandey AN, Ali I, Singh AK, Shrivastav TG, Chaube SK (2015) Apoptosis in mammalian oocytes: a review. Apoptosis. 20(8): 1019-1025.
Tsafriri A (1988) Vol.1. Cap 10. En: The Physiology of Reproduction. (Knobil, E.y Neill, eds.). Raven Press, New York.
Van Blerkom J (1990) Occurrence and developmental consequences of aberrant cellular organization in meiotically mature human oocytes after exogenous ovarian hyperstimulation J Electron Microsc Tech 16(4): 324-346.
Veeck LL (1999) Gamete maturation. En: An Atlas of Human Gametes and Conceptuses: An Illustrated Reference for Assisted Reproductive. CRC Press. pp.18.
Vitale AM, Calvert ME, Mallavarapu M, Yurttas P, Perlin J, Herr J, Coonrod S (2007) Proteomic profiling of murine oocyte maturation. Mol Reprod Dev 74: 608-616.
Wakayama S, Thuan NV, Kishigami S, Ohta H, Mizutani E, Hikichi T, Miyake M, Wakayama T (2004) Production of offspring from one-dayold oocytes stored at room temperature. J Reprod Dev 50: 627-637.
Wang X, Thomas P, Xue J, Fenech M (2004) Folate deficiency induces aneuploidy in human lymphocytes in vitro-evidence using cytokinesisblocked cells and probes specific for chromosomes 17 and 21. Mutat Res 551(1-2): 167-180.
Wassarman PM (1988) The Mammalian ovum. En: The Physiology of Reproduction. Knobil and Neill’s eds. New York: Raven Press, Ltd, pp: 69.
Watson AJ, Damsky CH, Kidder GM (1990b) Differentiation of an epithelium: Factors affecting the polarized distribution of Na/K-ATPase in mouse trophectoderm. Dev Biol 141(1): 104-114.
Watson A (1992) The cell biology of blastocyst development. Mol Reprod Dev 33(4): 492-505.
Webb M, Howlett SK, Maro B (1986) Parthenogenesis and cytoskeletal organization in ageing mouse eggs. J Embryol Exp Morphol 95: 31-45.Xia P (1997) Intracytoplasmic sperm injection: correlation of oocyte grade based on polar body, perivitelline space and cytoplasmic inclusions with fertilization rate and embryo quality. Hum Reprod 12: 1750-1755.
Wilcox AJ, Weinberg CR, Baird DD (1998) Post-ovulatory ageing of the human oocyte and embryo failure. Hum Reprod 13: 394-397.
Winston N, Johnson M, Pickering S, Braude P (1991) Parthenogenetic activation and development of fresh and aged human oocytes. Fertil Steril 56(5): 904-912.
Wu X, Viveiros MM, Eppig JJ, Bai Y, Fitzpatrick SL, Matzuk MM (2003) Zygote arrest 1 (Zar1) is a novel maternal-effect gene critical for the oocyte-to-embryo transition. Nat Genet 33: 187-191.
Xu Z, Abbott A, Kopf GS, Schultz RM, Ducibella T (1997) Spontaneous activation of ovulated mouse eggs: time-dependant effects on Mphase exit, cortical granule exocytosis, maternal messenger ribonucleic acid recruitment, and inositol 1,4,5-triphosphate sensitivity. Biol Reprod 57: 743-750.
Zamboni L, Thompson RS, Smith DM (1972) Fine morphology of human oocyte maturation in vitro. Biol Reprod 7(3): 425-457.
Zechel C (2005) The germ cell nuclear factor (Gcnf). Mol Reprod Dev 72: 550-556.
Zhang N, Wakai T, Fissore RA (2011) Caffeine alleviates the deterioration of Ca(2C) release mechanisms and fragmentation of in vitro-aged mouse eggs. Mol Reprod Dev 78: 684-701.
Zuccotti M, Piccinelli A, Giorgi Rossi P, Garagna S, Redi CA (1995) Chromatin organisation during mouse oocyte growth. Mol Reprod Dev 41: 479-485.
Zuccotti M, Giorgi Rossi P, Martinez A, Garagna S, Forabosco A, Redi CA (1998) Meiotic and developmental competence of mouse antral oocytes. Biol Reprod 58: 700-704.
Zuccotti M, Ponce RH, Boiani M, Guizzardi S, Govoni P, Scandroglio R, Garagna S, Redi CA (2002) The analysis of chromatin organisation allows selection of mouse antral oocytes competent for development to blastocyst. Zygote 10: 73-78.
Zuccotti M, Ponce RH, Boiani M, Guizzardi S, Govoni P, Scandroglio R, Garagna S, Redi CA (2002) The analysis of chromatin organisation allows selection of mouse antral oocytes competent for development to blastocyst. Zygote 10: 73-78.
Zuccotti M, Garagna S, Merico V, Monti M, Alberto Redi C (2005) Chromatin organisation and nuclear architecture in growing mouse oocytes. Mol Cell Endocrinol 234: 11-17.
Zuccotti M, Merico V, Sacchi L, Bellone M, Brink TC, Bellazzi R, Stefanelli M, Redi CA, Garagna S, Adjaye J (2008) Maternal Oct-4 is a potential key regulator of the developmental competence of mouse oocytes. BMC Dev Biol 8: 97.
Zuccotti M, Merico V, Sacchi L, Bellone M, Brink TC, Stefanelli M, Redi CA, Bellazzi R, Adjaye J, Garagna S (2009) Oct-4 regulates the expression of Stella and Foxj2 at the Nanog locus: implications for the developmental competence of mouse oocytes. Hum Reprod 24(9): 2225-2237.
Zuccotti M, Merico V, Cecconi S, Redi C, Garagna S. (2011) What does it take to make a developmentally competent mammalian egg?. Human Reproduction Update 17(4): 525-540.
Zuccotti M, Merico M, Belli M, Mula F, Sacchi L,Zupan B, Redi CA, Prigione A, Adjaye J, Bellazzi R, Garagna S. (2012) OCT4 and the acquisition of oocyte developmental competence during folliculogenesis. Int J Dev Biol 56: 853-858.
Downloads
Publicado
Como Citar
Edição
Seção
Licença
1. Política propuesta para revistas de acceso abierto
Los autores/as que publiquen en esta revista aceptan las siguientes condiciones:
- Los autores/as conservan los derechos de autor y ceden a la revista el derecho de la primera publicación, con el trabajo registrado con la licencia de atribución de Creative Commons, que permite a terceros utilizar lo publicado siempre que mencionen la autoría del trabajo y a la primera publicación en esta revista.
- Los autores/as pueden realizar otros acuerdos contractuales independientes y adicionales para la distribución no exclusiva de la versión del artículo publicado en esta revista (p. ej., incluirlo en un repositorio institucional o publicarlo en un libro) siempre que indiquen claramente que el trabajo se publicó por primera vez en esta revista.
- Se permite y recomienda a los autores/as a publicar su trabajo en Internet (por ejemplo en páginas institucionales o personales) despues del proceso de revisión y publicación, ya que puede conducir a intercambios productivos y a una mayor y más rápida difusión del trabajo publicado.