Identification of Huanglongbing symptoms in citrus leaves by deep learning techniques
Keywords:
Deep Learning, Transfer Learning, Mobile Application, Huanglongbing, CitrusAbstract
rtificial vision systems allow automating tasks that require trained personnel to identify relevant characteristics of certain objects. This paper describes the development of a mobile application that uses deep learning tech-niques to identify symptoms of Huanglongbing and nutritional deficiencies in citrus tree leaves. The transfer learning models Inception and MobileNet using Tensorflow and Python were evaluated. A mobile application was created for Android that managed to correctly classify 89% of the sheet images of an evaluation set using the MobileNet model. The application generated will improve the identification of symptoms in leaves of citrus trees during monitoring in cit-rus plantations.
Downloads
Published
Issue
Section
License
Copyright (c) 2019 Javier Berger, César Preussler, Juan Pedro Agostini

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Those authors who have publications with this journal, agree with the following terms:
a. Authors will retain its copyright and will ensure the rights of first publication of its work to the journal, which will be at the same time subject to the Creative Commons Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0) allowing third parties to share the work as long as the author and the first publication on this journal is indicated.
b. Authors may elect other non-exclusive license agreements of the distribution of the published work (for example: locate it on an institutional telematics file or publish it on an monographic volume) as long as the first publication on this journal is indicated,
c. Authors are allowed and suggested to disseminate its work through the internet (for example: in institutional telematics files or in their website) before and during the submission process, which could produce interesting exchanges and increase the references of the published work. (see The effect of open Access)















