Workplace stress assessment using emotional recognition and heart rate techniques
DOI:
https://doi.org/10.24215/15146774e073Keywords:
artificial intelligence, deep face, emotion recognition, healthAbstract
This study aims to develop a mechanism to evaluate employee health through emotion recognition (ER) analysis and heart rate measurement, with the goal of establishing correlations with stress levels. It is the second phase of a previous study, where current results will be compared to those previously obtained. In both studies, biometric devices such as cameras were used to capture facial images analyzed with artificial intelligence, and sensors in mobile phones or smartwatches to record heart rate. Given the challenge of emotion detection, we propose using the DeepFace algorithm for facial emotion recognition, which has demonstrated a 94% accuracy. Additionally, employees will complete a self-administered questionnaire about their emotional and mental state (neutral, tired, energized), allowing for a comparison between detected emotions and subjective reports. This will provide a better understanding of the accuracy of emotion recognition and contribute to improving health status evaluation.
References
Vega, Alejandro; Bilbao, Martín; Falappa, Marcelo A. Detección de estrés laboral mediante reconocimiento de emociones y ritmo cardíaco. In Proceedings of the 53 Jornadas Argentinas de Informática, Bahía Blanca, Argentina, 12-16 August, 2024.
Huang, D.; Guan, C.; Ang, K.K.; Zhang, H.; Pan, Y. Asymmetric spatial pattern for EEG-based emotion detection. In Proceedings of the 2012 International Joint Conference on Neural Networks (IJCNN), Brisbane, Australia, 10–15 June 2012; pp. 1–7.
Chowdary, M.K.; Nguyen, T.N.; Hemanth, D.J. Deep learning-based facial emotion recognition for human–computer interaction applications. Neural Comput. Appl. 2021, 35, 23311–23328.
Singh, S.K.; Thakur, R.K.; Kumar, S.; Anand, R. Deep learning and machine learning based facial emotion detection using CNN. In Proceedings of the 2022 9th International Conference on Computing for Sustainable Global Development (INDIACom), New Delhi, India, 23–25 March 2022; pp. 530–535.
Cui, Y.; Wang, S.; Zhao, R. Machine learning-based student emotion recognition for business English class. Int. J. Emerg. Technol. Learn. 2021, 16, 94–107.
Ganster, D. C., & Rosen, C. C. (2013). Work Stress and Employee Health: A Multidisciplinary Review. Journal of Management, 39(5), 1085-1122.
https://doi.org/10.1177/0149206313475815
Venkatesan, R.; Shirly, S.;Selvarathi, M.; Jebaseeli, T.J. Human Emotion Detection Using DeepFace and Artificial Intelligence. Eng. Proc. 2023, 59, 37. https://doi.org/10.3390/engproc2023059037
Taigman, Y., Yang, M., Ranzato, M. A., & Wolf, L. (2014). Deepface: Closing the gap to human-level performance in face verification. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 1701-1708).
Peiró, J. M., & Salvador, A. (1993). Desencadenantes del estrés laboral (Vol. 2). Madrid: Eudema.
Atalaya, M. (2001). El estrés laboral y su influencia en el trabajo. Industrial data, 4(2), 25-36.
Shaffer, F., & Ginsberg, J. P. (2017). An overview of heart rate variability metrics and norms. Frontiers in public health, 5, 258.
Sirio, L. Confiabilidad de par´ametros fisiol´ogicos estimados por elementos vestibles (wearables). Ritmo card´ıaco, posici´on y aceleraci´on, ECG.
Chalmers, T.; Hickey, B.A.; Newton, P.; Lin, C.-T.; Sibbritt, D.; McLachlan, C.S.; Clifton-Bligh, R.; Morley, J.; Lal, S. StressWatch: The Use of Heart Rate and Heart Rate Variability to Detect Stress: A Pilot Study Using Smart Watch Wearables. Sensors 2022, 22, 151. https://doi.org/10.3390/s22010151
Liliana, D. Y. (2019, April). Emotion recognition from facial expression using deep convolutional neural network. In Journal of physics: conference series (Vol. 1193, p. 012004). IOP Publishing.
Taigman, Y., Yang, M., Ranzato, M., & Wolf, L. (2014). DeepFace: Closing the Gap to Human-Level Performance in Face Verification. 2014 IEEE Conference on Computer Vision and Pattern Recognition, 1701-1708.
Parkhi, O., Vedaldi, A., & Zisserman, A. (2015). Deep face recognition. In BMVC 2015-Proceedings of the British Machine Vision Conference 2015. British Machine Vision Association
Zuniga-Jara, S., & Pizarro-Leon, V. (2018). Mediciones de estrés laboral en docentes de un colegio público regional chileno. Información tecnológica, 29(1), 171-180.
Osorio, J. E., & Cárdenas Niño, L. (2017). Estrés laboral: estudio de revisión. Diversitas: perspectivas en psicología, 13(1), 81-90.
Sirio, L. Confiabilidad de parámetros fisiológicos estimados por elementos vestibles (wearables). Ritmo cardíaco, posición y aceleración, ECG.
Gómez, B. A. C., De La Hoz, O. J. R., López, D. M. S., & Solorzano, J. G. (2021). Implementación de una herramienta de medición del ritmo cardíaco basado en plataforma Android. Ciencia e Ingeniería: Revista de investigación interdisciplinar en biodiversidad y desarrollo sostenible, ciencia, tecnología e innovación y procesos productivos industriales, 8(2), 6
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Alejandro M. Vega, Martín Bilbao, Marcelo A. Falappa

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Those authors who have publications with this journal, agree with the following terms:
a. Authors will retain its copyright and will ensure the rights of first publication of its work to the journal, which will be at the same time subject to the Creative Commons Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0) allowing third parties to share the work as long as the author and the first publication on this journal is indicated.
b. Authors may elect other non-exclusive license agreements of the distribution of the published work (for example: locate it on an institutional telematics file or publish it on an monographic volume) as long as the first publication on this journal is indicated,
c. Authors are allowed and suggested to disseminate its work through the internet (for example: in institutional telematics files or in their website) before and during the submission process, which could produce interesting exchanges and increase the references of the published work. (see The effect of open Access)















