A classification approach for heterotic performance prediction based on molecular marker data
Keywords:
Machine learning, maize, heterotic groupAbstract
A number of statistical methods based on molecular data are currently available for assigning new inbreds to heterotic groups in maize (Zea mays L), with variable results. We conjecture that the main flaw of such models is that they do not capture the non-linear relation between parental data and progeny performance. In this paper, we propose the use of supervised learning methods for handling such non-linearity. Standard and novel multiclassification methods are evaluated. Best results are obtained with the recently introduced class of multiclass, binary based, Recursive ECOC (RECOC) classifiers. RECOC classifiers are inspired in state of art Coding Theory solutions for the problem of transmitting symbols over noisy channels. For molecular marker data the noisy channel abstraction embeds the hardness of learning a classification function from noisy and scarce samples. Field data (top crosses between 26 inbreed lines and four tester populations), processed by cluster analysis in a previous work, was integrated with molecular marker data and used for training RECOC – AdaBoost Support Vector Machines RBF classifiers. A 34.10 % 3-CV error was achieved, clearly improving previously reported results on this task.
Downloads
Published
Issue
Section
License
Copyright (c) 2007 Leonardo Ornella, Elizabeth Tapia

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Those authors who have publications with this journal, agree with the following terms:
a. Authors will retain its copyright and will ensure the rights of first publication of its work to the journal, which will be at the same time subject to the Creative Commons Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0) allowing third parties to share the work as long as the author and the first publication on this journal is indicated.
b. Authors may elect other non-exclusive license agreements of the distribution of the published work (for example: locate it on an institutional telematics file or publish it on an monographic volume) as long as the first publication on this journal is indicated,
c. Authors are allowed and suggested to disseminate its work through the internet (for example: in institutional telematics files or in their website) before and during the submission process, which could produce interesting exchanges and increase the references of the published work. (see The effect of open Access)















