Utilización de modelos de lenguaje basados en redes LSTM y movimientos oculares para la comprensión del proceso de predicción de palabras Futuras
Palabras clave:
LSTM, Eye Movements, Linear Mixed Model, ReadingResumen
Los modelos actuales de Procesamiento del Lenguaje Natural son capaces de alcanzar excelentes resultados en tareas lingüísticas. Por ejemplo, los modelos basados en redes LSTM pueden generar abstracciones para hacer predicciones sobre las palabras futuras. Dicha habilidad abre una ventana en el campo de la neurociencia cognitiva. Se sabe que la probabilidad de que un lector sepa una palabra antes de leerla (variable denominada cloze-Predictability) impacta en el tiempo que el lector se posa sobre ella. Sin embargo, poco se sabe acerca de cuando o como estas predicciones son realizadas. Aquí, entrenamos modelos basados en LSTM para predecir palabras futuras y usar sus predicciones para reemplazar la cloze-Predictability enmodelos estadísticos del campo de la neurociencia. Observamos que la LSTM-Predictability puede modelar movimientos oculares con una alto solapamiento tanto con cloze-Predictability como con la frecuencia léxica. Además, este rendimiento varía en función del corpus de entrenamiento. Este estudio es un paso más hacia la comprensión de cómo nuestro cerebro realiza predicciones durante la lectura.
Descargas
Publicado
Número
Sección
Licencia
Derechos de autor 2022 Alfredo Umfurer, Juan Kamienkowski, Bruno Bianchi

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
Aquellos autores/as que tengan publicaciones con esta revista, aceptan los términos siguientes:
- Los autores/as conservarán sus derechos de autor y garantizarán a la revista el derecho de primera publicación de su obra, el cuál estará simultáneamente sujeto a la Creative Commons Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0) que permite a terceros compartir la obra siempre que se indique su autor y su primera publicación esta revista, no hagan uso comercial de ella y las obras derivadas de hagan bajo la misma licencia.
- Los autores/as podrán adoptar otros acuerdos de licencia no exclusiva de distribución de la versión de la obra publicada (p. ej.: depositarla en un archivo telemático institucional o publicarla en un volumen monográfico) siempre que se indique la publicación inicial en esta revista.
- Se permite y recomienda a los autores/as difundir su obra a través de Internet (p. ej.: en archivos telemáticos institucionales o en su página web) antes y durante el proceso de envío, lo cual puede producir intercambios interesantes y aumentar las citas de la obra publicada. (Véase El efecto del acceso abierto).















