La teledetección por radar como fuente de información litológica y estructural. análisis espacial de imágenes SAR de RADARSAT-1

Autores/as

  • Daniela S. Marchionni INREMI Instituto de Recursos Minerales, Universidad Nacional de La Plata (UNLP) - Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CICBA).
  • François Cavayas Département de Géographie, Université de Montréal

Palabras clave:

sistemas de radar, análisis espacial, morfología, litología, estructuras

Resumen

Las imágenes de radar se han convertido en los últimos años en una herramienta de uso frecuente para la extracción de información geológica, siendo cada vez más numerosos los sistemas de teledetección por radar que ponen a disposición una gran variedad de imágenes de gran utilidad en la cartografía geológica. Dada la geometría de observación de los sistemas de radar (observación lateral) y las características de la señal (microondas activas), los datos adquiridos por sensores de radar son sustancialmente diferentes a los obtenidos por los sensores óptico-electrónicos, pudiendo ser considerados como una fuente de información complementaria. Los procesos que intervienen en la formación de una imagen de radar son muy dependientes de las propiedades del haz de radar, en términos de las características de la señal (frecuencia y polarización) y la geometría de observación (ángulo de incidencia, dirección de visión). Los satélites que llevan a bordo sensores de radar, pueden tomar imágenes en órbita ascendente o descendente, con mirada a la derecha o a la izquierda y con distintos ángulos de inclinación, variando así las condiciones de iluminación, por lo cual imágenes de una misma zona pueden ofrecer información muy diferente. Por estos motivos, el criterio de selección de las imágenes para una aplicación particular se convierte en un paso esencial. La sensibilidad de las microondas a las propiedades dieléctricas, al contenido de humedad y a la rugosidad superficial –en relación con la longitud de onda del haz de radar-, se verá reflejada en el tono y textura de las imágenes, dado que estos factores inciden directamente en la intensidad de la señal. Los sensores de radar permitirán poner en evidencia variaciones morfológicas sutiles en la micro topografía de los afloramientos, aún cuando las mismas se encuentren por debajo del límite de la resolución espacial. La morfología del terreno –sus pendientes y orientaciones- impactará significativamente en el retorno de la señal, puesto que condiciona el ángulo de incidencia local del haz de radar. Por otra parte, la geometría de visión lateral favorecerá el reconocimiento de lineamientos y rasgos estructurales en general, cuando estos presenten una expresión morfológica superficial y cuando la observación de los mismos sea realzada por la dirección de iluminación del haz de radar. Dada la gran variabilidad de los factores involucrados en la formación de una imagen de radar y de cómo todos estos factores interactúan con las características del territorio observado, es necesario tener estos elementos en cuenta para poder interpretar fielmente las características geológicas de un área. Se presentan aquí los fundamentos y resultados de algunas experiencias orientadas a analizar las potencialidades de las imágenes de radar de expresar variaciones litológicas y de favorecer la detección de rasgos estructurales y morfológicos.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Abrams, M.J., Ashley, R., Rowan, L., Goetz, A., Kahle, A., (1977). Mapping of hydrothermal alteration in the Cuprite Mining District, Nevada, using aircraft scanner images for the spectral region 0.46 to 2.36 um. Geology, (5): 713-718.

Adair M. y Guindon B., (1990). Statistical edge detection operators for linear feature extraction in SAR images. Canadian Journal of Remote Sensing, 16 (2): 10-19.

Attema, E., Desnos, Y-L., Duchossois, G., (2000). Synthetic Aperture Radar in Europe: ERS, Envisat, and Beyond. Johns Hopkins Apl Technical Digest, 21 (1): 155-161.

ASI, (2009). COSMO-SkyMed Mission and Product Description. Italian Space Agency. 119 p.

Bovik, A.C., (1988). On detecting edges in speckled images. IEEE Transactions on Acoustics, Speech, and Signal Processing, 36 (10): 1618-1627.

Bedell, R.L., (2001). Geological mapping with ASTER satellite: new global satellite data that is a significant leap in remote sensing geologic and alteration mapping. Special Publication Geology Society of Nevada, (33): 329–334.

Berger, B.R., King, T.V.V., Morath, L.C., Phillips, J.D., (2003). Utility of high-altitude infrared spectral data in mineral exploration: Application to northern Patagonia Mountains, Arizona: Economic Geology, (98): 1003–1018.

Bloom, R.G. y Daily, M., (1982). Radar image processing for rock-type discrimination. En: IEEE Transactions on Geoscience and Remote Sensing, GE-20 (3): 343-351.

Brivio, P. A., Doria, I. and Zilioli, E., (1994). Structure function analysis of natural scenes from Landsat TM data. ITC Journal, (1): 1-6.

Budkewitsch, P., Newton G., Hynes, A., (1994). Characterization and extraction of linear features from digital images. Canadian Journal of Remote Sensing, 20 (3): 268-279.

CASI, (1993). Special Issue: RADARSAT. Canadian Journal of Remote Sensing, 19 (4), entire issue.

CASI, (1994). Special Issue on Radar Geology. Canadian Journal of Remote Sensing, 20 (3), entire issue.

CASI, (1999).Special Issue on the Applications of RADARSAT-1 Data in Geology. Canadian Journal of Remote Sensing, 25 (3), entire issue.

CASI, (2004).Canadian Journal of Remote Sensing, RADARSAT-2 Special Issue, 30 (3), 365 p.

CCRS, (1995). Conceptos básicos de teledetección por radar. Proyecto ProRADAR. Canada Centre for Remote Sensing, Ottawa, Canadá. Octubre de 1995, 89 p.

Daily, M., (1983). Hue-Saturation-Intensity Split-Spectrum Processing of Seasat Radar Imagery. Photogrammetric Engineering and Remote Sensing, 49 (3): 349-355.

De Sève, D., Desjardins, R., Toutin, T., (1994). Contribution des donées radar d’ERS-1 dans l’appréhension de l’organisation des linéaments: Le cas de l’astrobleme de Charlevoix. Canadian Journal of Remote Sensing, 20 (3): 233-244.

Deslandes, S. y Gwyn, Q., (1991). Evaluation de SPOT et SEASAT pour la cartographie des linéaments: comparaison basée sur l’analyse de spectres de Fourier. Canadian Journal of Remote Sensing, 17 (2): 98-110.

Desnos, Y.-L., Buck, C., Guijarro, J., Levrini, G., Suchail, J.L., Torres, R., Laur, H., Closa, J., Rosich, B., (2000). The ENVISAT advanced synthetic aperture radar system. International Geoscience and Remote Sensing Symposium, 2000. Proceedings. IGARSS 2000. IEEE 2000 (Jul 2000), 3: 1171 – 1173.

Deutsch, C.V. y Journel, A.G., (1998). Geostatistical Software Library and User’s Guide (GSLIB) (2nd. Ed.) Applied Geostatistics Series. Oxford University Press. 369 p.

D’Iorio, M., Budkewitch A, P., Mahmood, N.N., (1997). Practical considerations for geological investigations using RADARSAT-1 stereo image pairs in tropical environments. GER’97. 8 p.

Drury, S.A., (1993). Image Interpretation in Geology (2nd. Ed.).Chapman & Hall Eds. London. 283 p.

Elachi, C., (1987). Spaceborne Radar Remote Sensing: Applications and Techniques. IEEE Geoscience and Remote Sensing Society. Institute of Electrical and Electronics Engineers Inc., New York. 231 p.

Evans, D.L., Plant, J.J., Stofan, E.R., (1997). Overview of the Spaceborne Imaging Radar C/X band Synthetic Aperture Radar (SIR-C/X-SAR) Missions. Remote Sensing of Environment, (59): 135- 140.

Evans, D.L., Farr, T.G., Ford, J.P., Thompson, T.W., Werner, C.L., (1986). Multipolarization Radar Images for Geologic Mapping and Vegetation Discrimination. IEEE Transactions on Geoscience and Remote Sensing, GE-24 (2): 246-257.

ESA, (2007). ASAR Product Handbook. European Space Agency. Issue 2.2. 564 p.

Ford, J.P., Cimio, J.B., Elachi, C., (1983). Space Shuttle Columbia views the World with Imaging Radar: the SIR-A Experiment. Jet Propulsion Laboratory Publication 82-95, Pasadena. 179 p.

Ford, J.P., Bloom, R.G., Bryan, M.L., Daily, M.I., Dixon, T.H., Elachi, C., Xenos, E.C., (1980). Seasat views North America, the Caribean, and Western Europe with Imaging Radar. Jet Propulsion Laboratory Publication 80-67, Pasadena. 141 p.

Ford, J.P., Blom, R.G., Coleman Jr., J.L., Farr, T.G., Plaut, J.J., Pohn, H.A., Sabins Jr., F.F., (1998). Radar Geology. En: P.M. Henderson & A. J. Lewis (eds.). Principles & Applications of Imaging Radar, Manual of Remote Sensing. Am. Soc. Phot. and Rem. Sens. New York: 511-565.

Haralick, R.M., (1979). Statistical and structural approaches to texture. Proceedings of IEEE, 67 (5): 786-804.

Haralick, R.M., Shanmugam, K., Dinstein, I., (1973). Textural features for image classification. IEEE Transactions on Systems, Man and Cybernetics, SMC-3 (6): 610-621.

Harris, J.R., (1985). Lineament Mapping of Central Nova Scotia using Landsat MSS and SEASAT SAR data. Proceedings of the Ninth Canadian Symposium on Remote Sensing: 359-373.

Harris, J.R., (1991). Mapping of Regional Structure of Eastern Nova Scotia using remotely sensed imagery: implications for regional tectonics and gold exploration. Canadian Journal of Remote Sensing, 17 (2): 122-135.

He, D.C. y Wang, L., (1990). Recognition of lithological units in airborne SAR images using new textural features. International Journal of Remote Sensing, 11 (12): 2337-2344.

He, D.C. y Wang, L., (1991). Textural filters based on the texture spectrum. Pattern Recognition, 24 (12): 1187-1195.

He, D.C. y Wang, L., (1992). Unsupervised textural classification of images using the texture spectrum. Pattern Recognition, 25 (3): 247-255.

Hunt, G.R. y Ashley, R.P., (1979). Spectra of altered rocks in the visible and near infrared. Economic Geology, 74: 1613-1629.

James, M., (1987). Pattern Recognition. BSP Professional Books. London. 144 p.

Jensen, W., (1995). ERS-1/2 and its data used in operational systems. International Geoscience and Remote Sensing Symposium, 1995.IGARSS '95.Quantitative Remote Sensing for Science and Applications, 2: 1044-1046

Jensen, J.R., (1996). Introductory Digital Image Processing. A Remote Sensing Perspective.PrenticeHall, Englewood Cliffs, New Jersey. 271 p.

JPL, (1980). Radar Geology: An Assessment. Reptort of the Radar Geology Workshop, Snowmass Colorado (July 1979). Jet Propulsion Laboratory Publication 80-61, Pasadena. 513 p.

JPL, (1982). The SIR-B Science Plan. Jet Propulsion Laboratory Publication 82-78, Pasadena. 90 p.

Karnieli, A., Meisels, A., Fisher, L., Arkin, Y., (1996). Automatic extraction and evaluation of geological linear features from digital remote sensing using a Hough Transform. Photogrammetric Engineering & Remote Sensing, 62 (5): 525-531.

Kimura, H., Ito, N., (2000). ALOS/PALSAR: the Japanese second generation spaceborne SAR and its applications, Proc. SPIE, 2000, 4152: 110–119.

Kruse, F.A., Bordman, J.W., Huntington, J.F., (2003). Comparison of airborne hyperspectral data and EO-1 Hyperion for mineral mapping.IEEE Trans. Geosciences Remote Sensing, 41 (6): 1388– 1400.

Lewis, A.J., Henderson, P.M., Holcomb, D.W., (1998). Radar Fundamentals: The Geoscience Perspective. In: P.M. Henderson & A. J. Lewis (eds.). Principles & Applications of Imaging Radar, Manual of Remote Sensing, New York, Am. Soc. Photogrammetry and Remote Sensing: 131-181.

Lillesand, T.M. y Kiefer, R.W., (1987). Remote Sensing and Image Interpretation. Wiley, New York.

Lowman Jr., P., (1994). Radar Geology of the Canadian Shield: a 10-Year Review. Canadian Journal of Remote Sensing, 20 (3): 198- 209.

Lowman, P. Jr., Harris, J., Masuoka, P. M., Singhroy, V. H., Slaney, V. R., (1987). Shuttle Imaging Radar (SIR-B) Investigations of the Canadian Shield: Initial report. IEEE Transactions on Geoscience and Remote Sensing, GE 25: 55-66.

Lusch, D.P., (1999). Introduction to Microwave Remote Sensing. BSRSI. Basic Science and Remote Sensing Initiative. Department of Geography, Michigan State University. 84 p..

Mahmood, A., Carboni, S., Muller, J., Parashar, S., (1996). Potential use of RADARSAT-1 in geological remote sensing. Proc. 11th Thematic Conference and Workshops: Applied Geologic Remote Sensing, February 27-29, Las Vegas, Nevada, I: 475-I484.

Marchionni, D., (2007). Caracterización volcano-tectónica y detección de áreas mineralizadas en el Sector Central del Macizo del Deseado (Provincia de Santa Cruz). Aplicación de la Teledetección (UNLP), 317 p. (inédito)

Marchionni, D. y Cavayas, F., (2010). Utilización de imágenes de radar (ERS y RADARSAT) para la discriminación litológica y la cartografía estructural del sector central del Macizo del Deseado, Provincia de Santa Cruz, Argentina. Revista de la Asociación Geológica Argentina, 66 (4): 576- 591.

Marchionni, D. y Schalamuk, I., (2010). Aplicación de la teledetección espacial óptica y de radar para el análisis geológico y la detección de áreas mineralizadas en el sector central del Macizo del Deseado, provincia de Santa Cruz, Argentina. Revista de la Asociación Geológica Argentina, 66 (4): 592-607.

Marchionni. D., Cavayas, F. et Rolleri. E., (2000). Potentiel de Détection des Traits Structuraux d’un Territoire Semi-Désertique sur des Images RADARSAT: Le cas du Macizo del Deseado,

Argentina. CEOS-SAR Workshop (October 1999). Proceedings: 479-484. Toulouse, France.

Marchionni, D., de Barrio, R., Tessone, M. y Karszenbaum, H., (1997). Aportes de la información de ERS-1 en el reconocimiento de rasgos estructurales del sector central del Macizo del Deseado, provincia de Santa Cruz, Argentina. Su implicancia metalogénica. International Seminar on The Use and Applications of ERS in Latin America. Proceedings: 133-141. Viñas del Mar, Chile.

Marchionni, D., Cavayas F, Alperín, M., Del Blanco, M., (2001). RADARSAT Images Validation from field Surface Roughness Measures in a Semi-Desertic Territory: The Case of the Macizo del Deseado, Argentina. 8º Symposium International “Mesures physiques et signatures en teledetection”. Aussois, Francia. Actas: 161-166.

Marchionni, D., Tessone, M., de Barrio, R., Gagliardini, A. y Schalamuk, I., (1998). Patrones estructurales y morfológicos reconocidos sobre las imágenes SAR de ERS-1 y ERS-2 y vinculados a mineralizaciones hidrotermales, Macizo del Deseado, Provincia de Santa Cruz, Argentina. Actas Jornadas Argentinas de Teleobservación. Buenos Aires.

Mather, P. M., Tso, B., Koch, M. 1998. An evaluation of Landsat-TM spectra data and SAR-derived textural information for lithological discrimination in the Red Sea Hills, Sudan. International Journal of Remote Sensing, 19 (4): 587-604.

Müschen, B., Böhm, C., Roth, A., Schwäbisch, M., Holz, A., (1997). Monitoring of subglacial volcanic eruption and glacial flood in southern Iceland using ERS-1/2 SAR data. Proceedings of an International Seminar on the Use and Applications of ERS in Latin America. Viña del Mar, Chile, November 1996 (ESA SP 405): 263-271.

Paradella, W. R, Dos Santos, A. R., Veneziani, P., De Morais, M. C., (2000). Synthetic Aperture Radar for geological applications in the moist tropics: experiences from the Brazilian Amazon region. Revista Brasileira de Geociências 30 (3): 538-542.

Parker, J.R., (1997). Algorithms for image processing and computer vision. Wiley Computer Publishing. John Wiley& Sons, Inc. United States of America. 417 p.

Pietikainen, M., Ojala, T., Silven, O., (1998). Approaches to texture-based classification, segmentation and surface inspection, In: Handbook of Pattern Recognition and Computer Vision (2nd Ed.), Eds. C.H.Chen, L.F. Pau and P.S.P. Wang, World Scientific Publishing Company, Singapore, 711-736.

Podwysocki, M.H., Power, M.S., Jones, O.D., (1985). Preliminary evaluation of Landsat 4 Thematic Mapper data for mineral exploration. Advances in Space Research, 5: 47-55.

Pratt, W.K., (1991). Digital Image Processing, John Wiley & Sons, 2nd edition, Toronto.

Price, M.H., (1999). Integration of Landsat TM and SIR-C polarimetric radar for lithological mapping near Goldfield, Nevada. Proceeding of the Thirteenth International Conference on Applied Geologic Remote Sensing, Vancouver, British Columbia, I: 452-4559.

RADARSAT Int., (1997). RADARSAT Geology Handbook. RADARSAT International, Richmond, British Columbia, Canadá. 70 p.

Raney, R.K., (1992). Course notes (unpublished notes). Canada Centre for Remote Sensing. Ottawa, Ontario. Canadá.

Raney, R.K., Luseombe, A.P., Langham, E.J., Ahmed, S., (1991). RADARSAT. Proceedings of IEEE, 79 (6): 839-849.

Rast, A., (1995). ERS 1/2 overview of scientific results over land.Geoscience and Remote Sensing Symposium, 1995. IGARSS '95. Quantitative Remote Sensing for Science and Applications, International, 2: 1038-1040.

Rosenqvist, A., Shimada, M., Ito, N., Watanabe, M., (2007). ALOS PALSAR: A Pathfinder Mission for Global-Scale Monitoring of the Environment. IEEE Transactions on Geoscience and Remote Sensing, 45 (11): 3307-3316

Descargas

Publicado

2014-04-07

Cómo citar

Marchionni, D. S., & Cavayas, F. (2014). La teledetección por radar como fuente de información litológica y estructural. análisis espacial de imágenes SAR de RADARSAT-1 . Geoacta, 39(1), 62–89. Recuperado a partir de https://revistas.unlp.edu.ar/geoacta/article/view/13496

Número

Sección

Trabajos científicos