Mediciones de espesor de hielo en Chile usando radio eco sondaje

Autores/as

  • Jonathan Oberreuter A. Centro de Estudios Científicos, Valdivia, Chile
  • José Uribe P. Centro de Estudios Científicos, Valdivia, Chile.
  • Rodrigo Zamora M. Centro de Estudios Científicos, Valdivia, Chile.
  • Guisella Gacitúa C. Centro de Estudios Científicos, Valdivia, Chile.
  • Andrés Rivera I. Centro de Estudios Científicos, Valdivia, Chile, Departamento de Geografía, Universidad de Chile, Santiago, Chile

Palabras clave:

radio eco sondaje, espesor de hielo, glaciares, volumen equivalente de agua

Resumen

El radio eco sondaje ha sido una de las técnicas más utilizadas en los últimos años para medir el espesor de hielo en glaciares a lo largo de prácticamente todo Chile, especialmente en la región Central y en los Campos de Hielo Patagónicos. En este trabajo se presentan los principales sistemas utilizados en las últimas décadas y los resultados más representativos obtenidos con un sistema aerotransportado de reciente desarrollo que usa antenas de dipolo tipo bow-tie de frecuencias entre 20 y 50 MHz, las que son transportadas con helicóptero. Este sistema fue probado en glaciares hasta ahora inaccesibles o medidos a pie en perfiles que no han sido representativos de la totalidad del hielo prospectado. En estos glaciares, el sistema aerotransportado obtuvo una gran cobertura de datos gracias a sus ventajas operacionales de medir zonas con fuertes pendientes y sus capacidades de diseño electrónico, gracias a lo cual se logró detectar la estructura interna del hielo y la totalidad del espesor allí existente. Entre los resultados obtenidos destaca el espesor máximo de 129 m medido en el Glaciar Olivares Alfa (33°11’ S /70°13’ O) de 3.91 km2 de superficie en el año 2013, donde la gran cantidad de líneas levantadas permitió determinar un volumen equivalente de agua de 0.17 ± 0.02 km3.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Annan, A., (1998). Ground penetrating radar workshop notes, sensors and software Inc. Mississauga, Ontario.

Annan, A., (2009). Ground penetrating radar (GPR) principles. En: Harris Jol (editor), Ground penetrating radar: theory and applications: 3-40. Elsevier Science, Amsterdam.

Berthling, I. y Melvold, K., (2008). Ground-penetrating radar. En: Applied Geophysics in Periglacial Environments. Hauck, C. y Kneisel, C. (eds). Cambridge University Press.

Bogorodsky, V., Bentley, C., Gudmansen, P., (1985). Radioglaciology, Dordrecht, D. Reidel Publishing Co. 254 p.

Bown, F., Rivera, A., Acuña, C., (2008). Recent glaciers variations at the Aconcagua basin, central Chilean Andes. Annals of Glaciology, 48: 43-48.

Carrasco, J., Casassa, G., Quintana, J., (2005). Changes of the 0° C isotherm and the equilibrium line in altitude in central Chile during the last quarter of the 20th century. Hydrological Sciences Journal -Journal Des Sciences Hydrologiques, 50 (6): 933–948.

Carrasco, J., Osorio, R., Casassa, G., (2008). Secular trend of the equilibrium-line altitude on the western side of the southern Andes, derived from radiosonde and surface observations. Journal of Glaciology, 54 (186): 538- 550.

Casassa, G., (1992). Radio-echo sounding of Tyndall Glacier, Southern Patagonia. Bulletin of Glacier Research, 10: 69-74.

Casassa, G. y Rivera, A. (1998). Digital Radio-Echo Sounding at Tyndall Glacier, Patagonia. Anales del Instituto de la Patagonia, Serie Ciencias Naturales, 26: 129-135.

Casassa, G., Damm, V., Eisenburger, D., Jenett, M., Cárdenas, C., Acuña, C., Rivera, A., Lange, H., (2001). Estudios glaciológicos en Patagonia y Chile Central utilizando un sistema aerotransportado de radio eco sondaje. Anales del Instituto de la Patagonia, Serie Ciencias Naturales, 29: 25-44.

CECs, (2013). Línea de base glaciológica para glaciares de la cuenca alta del río Olivares y otras cuencas aledañas. Informe Final. Centro de Estudios Científicos. Valdivia. 370 p.

Conway, H., Smith, B., Vaswani, P., Matsuoka, K., Rignot, E., Claus, P., (2009). A low-frequency ice-penetrating radar system adapted for use from an airplane: test results from Bering and Malaspina Glaciers, Alaska, USA. Annals of Glaciology, 51: 93-97.

DGA, (2009). Radio eco-sondaje en la cuenca del Río Maipo y mediciones glaciológicas en el Glaciar Tyndall, Campo de Hielo Sur. Realizado por Universidad de Magallanes para DGA. S.I.T. 204, 95 p.

DGA, (2010). Balance de masa en el glaciar Echaurren Norte temporadas 1997-1998 a 2008-2009. Dirección General de Aguas, 32 p.

DGA, (2011a). Variaciones recientes de glaciares de Chile, según principales zonas glaciológicas. Elaborado por CECs para DGA. Dirección General de Aguas, S.I.T. 261, 143 p.

DGA, (2011b). Estimación de volúmenes de hielo en glaciares de Chile central. Elaborado por CECs para DGA. Dirección General de Aguas, S.I.T. 264. 155 p.

DGA, (2012a). Variaciones recientes de glaciares en respuesta al cambio climático: características glaciológicas de los glaciares San Rafael, Nef y Colonia, Campo de Hielo Norte. Elaborado por CECs para DGA. Dirección General de Aguas, S.I.T. 302. 237 p.

DGA, (2012b). Estimación de volúmenes de hielo mediante radio eco sondaje en Chile central. Elaborado por CECs para DGA. Dirección General de Aguas, S.I.T. 288. 173 pp.

DGA, (2013). Inventario publico de glaciares. Dirección General de Aguas, Ministerio de Obras Públicas, http://www.dga.cl/productosyservicios/mapas/Paginas/default.aspx (consultado el 23 de mayo de 2014).

Falvey, M. y Garreaud, R., (2009). Regional cooling in a warming world: recent temperature trends in the southeast Pacific and along the west coast of subtropical South America (1979 2006). Journal of Geophysical Research, 114, D04102, doi: https://doi.org/10.1029/2008JD010519

Grinsted, A., (2013). An estimate of global glacier volume. The Cryosphere, 7: 141-151.

Gilbert, J., Stasiuk, M., Lane, S., Adam, C., Murphy, M., Sparks, S., Naranjo, J., (1996). Non-explosive, Constructional Evolution of the Ice-filled Caldera at Volcán Sollipulli, Chile. Bulletin of Volcanology, 58: 67-83.

Glen, J. y Paren, J., (1975). The electrical properties of snow and ice. Journal of Glaciology, 15 (73):15-38.

Huss, M., y Farinotti, D., (2012). Distributed ice thickness and volume of all glaciers around the globe. Journal of

Geophysical Research,117; F04010, doi: https://doi.org/10.1029/2012JF002523

Jacob, T., Wahr, J., Pfeffer, W., Swenson, S., (2012). Recent contributions of glaciers and ice caps to sea level rise. Nature 582: 514-518.

Kennet, M., Laumann, T., Lund, C., (1993). Helicopter-borne radio-echo sounding of Svaritsen, Norway. Annals of Glaciology, 17: 23-26.

Macharet, Y., Moskalevsky, M., Vasilenko, E., (1993). Velocity of radio waves in glaciers as an indicator of their hydrothermal state, structure and regime. Journal of Glaciology, 29 (132): 373-384.

Masiokas, M., Rivera, A., Espizúa, L., Villalba, R., Delgado S., Aravena, J., (2009). Glacier fluctuations in extratropical South America during the past 1000 years. Palaeogeography, Palaeoclimatology, Palaeoecology, 281: 242–268.

Meza, F., Wilks, D., Gurovich, L., Bambach, N., (2012). Impacts of climate change on irrigated agriculture in the Maipo Basin, Chile: reliability of water rights and changes in the demand for irrigation. Journal of water resources planning and management, DOI: 10.1061/(ASCE)WR.1943-5452.0000216:421-430.

Pellicciotti, F., Burlando, P., van Vliet, K., (2007). Recent trends in precipitation and streamflow in the Aconcagua river basin, central Chile. International Association of Hydrological Sciences, 318: 17–38.

Peña, H. y Nazarala, N., (1987). Snowmelt-runoff Simulation Model of a Central Chile Andean Basin with Relevant Orographic Effects. En: Large Scale Effects of Seasonal Snow Cover (Proceedings of the Vancouver Symposium) IAHS Publ. 166: 161-172.

Plewes, A. y Hubbard, B., (2001). A review of the use of radio-echo sounding in glaciology. Progress in Physical Geography, 25 (2): 203-236.

Reynolds, J., (1997). An introduction to applied and environmental geophysics. Chichester: Wiley.

Rivera, A., Casassa, G., Acuña, C., Lange, H., (2000a). Variaciones recientes de glaciares en Chile. Invest. Geogr. Chile, 34: 29-60.

Rivera, A., Giannini, A., Quinteros, J., Schwikowski, M., (2000b). Ice thickness measurements on the glacier of Cerro Tapado, Norte Chico, Chile. En: Annual Report 1999, Labor für Radio- Und Umweltchemie der Universität Bern and des Paul Scherrer Instituts, Switzerland, Villigen: 38.

Rivera, A., Casassa, G., Acuña, C., (2001). Mediciones de espesor en glaciares de Chile centro-sur. Invest. Geogr. Chile, 35: 67-100.

Rivera, A. y Casassa, G., (2002). Detection of Ice Thickness using radio echo sounding on the Southern Patagonia Icefield. En: G. Casassa, F. Sepúlveda, Sinclair, R. (eds) The Patagonian Icefields. A unique natural laboratory for environmental and climate change studies. Kluwer Academic/Plenum Publishers, 101-115.

Rivera, A., Casassa, G., Acuña, C., Bown, F., (2002). Use of remotely sensed and field data to estimate the contribution of Chilean glaciers to eutastic sea-level rise. Annals of Glaciology, 34: 29-60.

Rivera, A., Acuña, C., Casassa, G., (2006a). Glacier variations in central Chile (32°S-41°S). En: Knight, P.G. (Ed). Glacier Science and Environmental Change, Blackwell, Oxford, UK, 246-247.

Rivera, A., Bown, F., Mella, R., Wendt, J., Casassa, G., Acuña, C., Rignot, E., Clavero, J., Brock, B., (2006b). Ice volumetric changes on active volcanoes in southern Chile. Annals of Glaciology, 43: 111–122.

Rivera, A., Bown, F., Carrión, D., Zenteno, P., (2012). Glacier responses to recent volcanic activity in Southern Chile. Environmental Research Letters, 7, doi: https://doi.org/10.1088/1748-9326/7/1/014036

Rivera, A. y Bown, F., (2013). Recent glacier variations on active ice capped volcanoes in the Southern Volcanic Zone (37º 46ºS), Chilean Andes. Journal of South American Earth Sciences, 45: 345-356.

Sheriff, R. y Geldart, L., (1995). Exploration seismology. Cambridge. Cambridge University Press.

Slater, L. y Comas, X., (2009). The contribution of ground penetrating radar to water resource research. En: Ground penetrating radar theory and applications: 203-246, Elsevier.

Steinhage, D., Nixdorf, U., Meyer, U., Miller, H., (1999). New maps of the ice thickness and subglacial topography in Dronning Maud Land, Antarctica, determined by means of airborne radio-echo sounding. Annals of Glaciology, 29: 267-272.

Topp, G., Davis, J., Annan, A., (1980). Electromagnetic determination of soil water content: Measurements in coaxial transmission lines. Water Resources Research, 16 (3): 574-582.

Zamora, R., Ulloa, D., García, G., Mella, R., Uribe, J., Wendt, J., Rivera, A., Gacitúa, G., Casassa, G., (2009). Airborne radar sounder for temperate ice: initial results from Patagonia. Journal of Glaciology, 55 (191): 507- 512.

Descargas

Publicado

2014-04-07

Cómo citar

Oberreuter A., J., Uribe P., J., Zamora M., . R., Gacitúa C., G., & Rivera I., A. (2014). Mediciones de espesor de hielo en Chile usando radio eco sondaje. Geoacta, 39(1), 108–122. Recuperado a partir de https://revistas.unlp.edu.ar/geoacta/article/view/13512

Número

Sección

Trabajos científicos