Characterization of Wind Intensity at the Ezeiza Station

Authors

  • Mariela Ayel´en Palavecino Servicio Meteorol´ogico Nacional, Universidad Nacional de La Plata
  • Alejandro Anibal Godoy Servicio Meteorol´ogico Nacional, Universidad Nacional de La Plata
  • Mar´ıa Eugenia Dillon Servicio Meteorol´ogico Nacional, Consejo Nacional de Investigaciones Cient´ıficas y T´ecnicas
  • Maria de los Milagros Skansi Servicio Meteorológico Nacional

DOI:

https://doi.org/10.24215/1850468Xe023

Keywords:

mean wind, maximum wind, Ezeiza

Abstract

Intense wind events cause material damage and expose human life and different ecosystems in situations of vulnerability. The intensity and direction of the wind play an important role in different disciplines: for example, they influence airport activity, determine the use of wind energy, intervene in agricultural production, impact on the spread of forest fires and therefore on air quality. Although some climate studies and climate variability of wind show a decrease in the average daily and annual intensity in recent years both in Argentina and in other regions of the world (Baldo and Cerne, 2018; Cuneo et al., 2019; Vautard, et al., 2010), significant positive trends in both surface and upper wind speeds are also observed in southern Argentina (Merino, 2022). For the reasons mentioned above, among others, it is very important to continue with studies referring to the wind variable at the national level. The objective of this work is to carry out a preliminary characterization of the wind at 10 m for different time scales in the aeronautical meteorological station of Ezeiza (SAEZ) during the period 2009-2019 and compare the results with the climatological period 1981-2010. The results found show that the lower intensities of the average daily winds and daily maximums for both the 2009-2019 series and the climatological series are recorded during the autumn and winter months and it is observed, in general, that the maximum daily winds double the intensity of the daily average winds. In addition, the monthly average winds of the period 2009-2019 show a clear tendency to decrease the intensity and amplitude between maximum and minimum values compared to the climatological data.

Downloads

Download data is not yet available.

Author Biographies

Mariela Ayel´en Palavecino, Servicio Meteorol´ogico Nacional, Universidad Nacional de La Plata

Servicio Meteorol´ogico Nacional, Buenos Aires, Argentina
Facultad de Ciencias Astron´omicas y Geof´ısicas, Universidad Nacional de La Plata

Alejandro Anibal Godoy, Servicio Meteorol´ogico Nacional, Universidad Nacional de La Plata

Servicio Meteorol´ogico Nacional, Buenos Aires, Argentina
Facultad de Ciencias Astron´omicas y Geof´ısicas, Universidad Nacional de La Plata

Mar´ıa Eugenia Dillon, Servicio Meteorol´ogico Nacional, Consejo Nacional de Investigaciones Cient´ıficas y T´ecnicas

Servicio Meteorol´ogico Nacional, Buenos Aires, Argentina
Consejo Nacional de Investigaciones Cient´ıficas y T´ecnicas (CONICET), Buenos Aires, Argentina

References

Baldo, M., Cerne, B., 2018: Sobre la variabilidad del viento medio diario en la región costera Patagónica comprendida entre las latitudes 38°S y 46°S. XIII Congreso Argentino de Meteorología (CONGREMET XIII). 16-19 de Octubre, Rosario, Argentina.

Crutcher, H.L., 1975: A note on the possible Misuse of the Kolmogorov-Smirnov Test. JournalofAppliedMeteorology, 14(18), 1600–1603. DOI: 10.1175/1520-0450(1975)014<1600:ANOTPM>2.0.CO;2.

Cúneo, L. M., Cerne, B., Llano, M., 2019: Descripción preliminar de la velocidad y dirección del viento medio mensual en Trelew. Meteorológica, 44(1), 66–80.

García Ferreyra, M. F., Curci, G., Della Ceca, L. S., Lighezzolo, R., 2017: Dispersión de la pluma de humo de los incendios forestales en la Patagonia nororiental durante el verano 2016-17: una visión desde el espacio.

Gastwirth, J. L., Gel, Y. R., Miao, W., 2009: The Impact of Levene’s Test of Equality of Variances on Statistical Theory and Practice. Statist. Sci. 24(3), 343-360. DOI: 10.1214/09-STS301.

Gultepe, I., Tardif, R., Michaelides, S., 2007: Fog Research: A Review of Past Achievements and Future Perspectives. Pure appl. geophys. 164, 1121–1159. DOI: 10.1007/s00024-007-0211-x.

Gultepe, I., Sharman, R., Williams, P. D., 2019: A Review of High Impact Weather for Aviation Meteorology. Pure Appl. Geophys. 176, 1869–1921. DOI: 10.1007/s00024-019-02168-6.

Justus, C. G., Hargraves, W. R., Mikhail, A., Graber, D., 1978: Methods for Estimating Wind Speed Frequency Distributions, Journal of Applied Meteorology and Climatology, 17(3), 350-353. DOI: 10.1175/1520-0450(1978)017<0350:MFEWSF>2.0.CO;2.

Leung, A. C. W., Gough, W. A., Butler, K. A., 2020: Characterizing observed surface wind speed in the Hudson Bay and Labrador regions of Canada from an aviation perspective. Int J Biometeorol 66, pp. 411–425 (2022). DOI: 10.1007/s00484-020-02021-9.

Levene, H., 1960: Contributions to Probability and Statistics: Essays in Honor of Harold Hotelling. Stanford University Press, Palo Alto, 278-292.

Lilliefors, H. W., 1967: On the Kolmogorov-Smirnov Test for Normality with Mean and Variance Unknown, Journal of the American Statistical Association, 62:318, 399–402. DOI: 10.1080/01621459.1967.10482916

Mann, H. B., Whitney, D. R., 1947: On a Test of Whether one of Two Random Variables is Stochastically Larger than the Other. The Annals of Mathematical Statistics, 18(1), 50–60.

Merino, R. A., Gassmann, M. I., 2022: Wind trends analysis in southern South America from weather station and reanalysis data. International Journal of Climatology, 42( 4), 2117– 2134. DOI:10.1002/joc.7355.

Otero, F., Cerne, B., Campetella, C., 2017: Estudio preliminar de la velocidad del viento en San Julián en referencia a la generación de energía eólica. Meteorológica, 42(2), 59-79.

Palavecino, M. A., 2021: Caracterización de la intensidad del viento en la escala diaria y verificación del pronóstico numérico en la estación Ezeiza. Tesis de Licenciatura. Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Ciencias de la Atmósfera y los Océanos, Buenos Aires.

Palese, C., Lassig J., 2012: Variabilidad del viento en Neuquén. XI Congreso Argentino de Meteorología (CONGREMET XI). 28-01 de Junio, Mendoza, Argentina.

Possia, N. E., 2004: Tesis Doctoral “Estudio de los ciclones explosivos sobre la región sur de Sudamérica”. Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, 223 págs.

Pryor, S. C., Barthelmie, R. J., Riley, E. S., 2007: Historical evolution of wind climates in the U.S.A. Journal of Physics: Conference Series 75, 1-8. DOI: 10.1088/1742-6596/75/1/012065.

Quinteros de Menzies, C. Y., Obertello, I., 1972: Pronóstico objetivo de niebla en Ezeiza.

Publicación de la Fuerza Aérea Argentina, Comando de regiones aéreas, Servicio Meteorológico Nacional, Serie C, 12, 32 páginas.

Ramírez González, M. P., 2006: Tesis doctoral “Modelado estadístico de las características del viento para su evaluación energética. Aplicación a las Islas Canarias”. Departamento de Ingeniería Mecánica. Universidad de Las Palmas de Gran Canaria, 509 págs. (Disponible en http://hdl.handle.net/10553/20027).

Rondan, G. A., Michelin, C. I., Brizuela, A. B., Maltese, N. E., Kemerer, A. C., 2019: Características del índice de temperatura y humedad modificado por viento y radiación en Entre Ríos, Argentina; Asociación Argentina de Agrometeorología; Revista Argentina de Agrometeorología; 10; 10-2019; 49-57.

Scott, R. H., 1896: Notes on some of the difference between fogs, as related to the weather systems which accompany them, submitted to the Fog Committee, Quart. J. Roy. Meteor. Soc. XXII, 41–65.

Seguro, J. V., Lambert, T. W., 2000: Modern estimation of the parameters of the Weibull wind speed distribution for wind energy analysis. Journal of Wind Engineering and Industrial Aerodynamics, 85(1), 75-84. DOI: 10.1016/S0167-6105(99)00122-1.

Tukey, J.W., 1977: Exploratory Data Analysis. Reading, Mass., Addison-Wesley, 2, 131160.

Vautard, R., Cattiaux, J., Yiou, P., 2010: Northern Hemisphere atmospheric stilling partly attributed to an increase in surface roughness. NatureGeosci 3, 756–761. DOI: 10.1038/ngeo979.

Waimann, C., 2016: Tesis Doctoral “Desarrollo de un sistema de pronóstico estocástico- dinámico de producción de energía eólica basado en el modelo WRF/CIMA”. Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Ciencias de la Atmósfera y los Océanos, Buenos Aires.

Wan, H., Wang, X. L., y Swail, V. R., 2010: Homogenization and Trend Analysis of Canadian Near-Surface Wind Speeds. Journal of Climate, 23(5), 1209-1225. DOI: 10.1175/2009JCLI3200.1.

Wilks, D. S., 2005: Statistical Methods in the Atmospheric Science. 2.ª ed., Academic Press, p. 648.

Yue, S., Wang, C. Y., 2002: The influence of serial correlation in the Mann-Whitney Test for detecting a shift in median. Advances in WaterResearch, 25, 325–333. DOI: 10.1016/S0309-1708(01)00049-5.

Published

2023-10-04

Issue

Section

Artículos