Verification of ensemble forecasts generated from the Data Assimilation and Numerical Forecasting System of the National Meteorological Service of Argentina for two case studies

Authors

  • Dan Yañez Universidad de Buenos Aires, Argentina
  • Maria Eugenia Dillon Servicio Meteorológico Nacional, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
  • Paula Maldonado Servicio Meteorológico Nacional, Argentina
  • Yanina Garcia Skabar Servicio Meteorológico Nacional, Argentina

DOI:

https://doi.org/10.24215/1850468Xe034

Keywords:

ensemble forecasting, regional analyses, SAP.SMN

Abstract

This work seeks to evaluate the performance of high-resolution (4 km) probabilistic forecasts generated from the data assimilation and numerical forecasting system of the Argentinian National Meteorological Service (known by its Spanish acronym SAP.SMN), and to study the impact of the initial conditions considering forecasts initialized from regional (AReg) and global ensemble analyses (SAP.SMN-ENS). Two case studies were selected to analyze the performance of both forecasts, characterized by the development of deep convection and intense precipitation in central-eastern Argentina and Uruguay, which occurred on February 26-27 and March 6-7, 2022. To verify the probabilistic forecasts, data from the Satellite Quantitative Precipitation Estimation SQPE-OBS, maximum reflectivity from C-band radars, conventional stations, and radiosondes were used. In general terms, it can be considered that AReg showed better performance for case 1, while for the other case study it was SAP.SMN-ENS that had a better performance, indicating a significant impact of initial conditions on forecast performance. In both case studies, both experiments adequately represent convective systems compared to radar data, with certain differences in their position and intensity, resulting in an underestimation of accumulated precipitation in 24 hours in areas of maximum precipitation estimated by SQPE-OBS. These results are encouraging regarding the inclusion of local observations in the initial condition of the high-resolution numerical forecasts of the SAP.SMN-ENS and motivate to continue advancing in the development of a regional data assimilation system that allows improving the accuracy of forecasts, investigating aspects such as the configuration and assimilation strategy.

Downloads

Download data is not yet available.

References

Alvarez Imaz, M., 2022: Estudio del impacto de la configuración del modelo WRF en pronósticos determinísticos y probabilísticos para un caso de iniciación de la convección en las Sierras de Córdoba, Argentina. Tesis doctoral, FCEyN, UBA.

https://hdl.handle.net/20.500.12110/tesis_n7211_AlvarezImaz

Arruti, A., P. Maldonado, M. Rugna, M. Sacco, J. Ruiz, L. Vidal, 2021: Sistema de control de calidad de datos de radar en el Servicio Meteorológico Nacional - Parte I: Descripción del algoritmo. Nota Técnica SMN 2021-86. http://hdl.handle.net/20.500.12160/1537

Bechis, H., V. Galligani, M.A. Imaz, M. Cancelada, I. Simone, F. Piscitelli, P. Maldonado, P. Salio, S. Nesbitt, 2022: A case study of a severe hailstorm in Mendoza, Argentina, during the relampago-cacti field campaign. Atmospheric Research 271, 106127. https://doi.org/10.1016/j.atmosres.2022.106127

Berner, J., S.Y. Ha, J.P. Hacker, A. Fournier, C. Snyder, 2011: Model uncertainty in a mesoscale ensemble prediction system: Stochastic versus multiphysics representations. Mon. Wea. Rev. 139, 1972–1995. https://doi.org/10.1175/2010MWR3595.1

Bowler, N.E., A. Arribas, K.R. Mylne, K.B. Robertson, S.E. Beare, 2008: The MOGREPS short-range ensemble prediction system. Q. J. R. Meteorol. Soc. 134, 703–722. https://doi.org/10.1002/qj.234

Chen, S.H. and W.Y. Sun, 2002: A one-dimensional time dependent cloud model. J. Meteor. Soc. Japan., 80(1), 99–118. https://doi.org/10.2151/jmsj.80.99.

Dillon, M.E., y coautores, 2021: A rapid refresh ensemble based data assimilation and forecast system for the RELAMPAGO field campaign. Atmos. Res. https://doi.org/10.1016/j.atmosres.2021.105858.

Dillon, M.E., C. Matsudo, Y. García Skabar, M. Sacco y M. Alvarez Imaz, 2020: Implementación del sistema de pronóstico numérico en el HPC: Configuración del ensamble. Nota Técnica SMN 2020-79. http://hdl.handle.net/20.500.12160/1403

Dillon, M.E., García Skabar, Y., Kalnay, E., Ruiz, J. y Collini, E., 2019: Sensibilidad de un sistema de asimilación de datos por ensambles a diferentes configuraciones, implementado en el sur de Sudamérica. Revista Meteorológica, V. 44 No.2, P. 15-34, 2019.

Dillon, M.E., Y. Garcia Skabar, M. Nicolini, 2013: Desempeño del pronóstico de modelos de alta resolución, en un área limitada: análisis de la estación de verano 2010-2011. Meteorológica, 38(2), 69-89.

Epstein, E.S., 1969: Stochastic-dynamic prediction. Tellus, 21, 739-759. https://doi.org/10.1111/j.2153-3490.1969.tb00483.x

Evensen, G. F.C. Vossepoel, P.J. van Leeuwen, 2022: Data Assimilation Fundamentals, Springer. https://doi.org/10.1007/978-3-030-96709-3

Evensen, G., 1994: Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics, J. Geophys. Res., 99, 143-162. https://doi.org/10.1029/94JC00572

Geer, A.J., y coautores, 2018: All-sky satellite data assimilation at operational weather forecasting centres. Q. J. R. Meteorol. Soc. 144, 1191–1217. https://doi.org/10.1002/qj.3202

Gustafsson, N., y coautores, 2018: Survey of data assimilation methods for convective-scale numerical weather prediction at operational centres. Q. J. R. Meteorol. Soc. 144, 1218–1256. https://doi.org/10.1002/qj.3179

Harnisch, F. and C. Keil, 2015: Initial conditions for convective-scale ensemble forecasting provided by ensemble data assimilation, Mon. Wea. Rev., 143, 1583-1600. https://doi.org/10.1175/MWR-D-14-00209.1

He, J., y coautores, 2019: Development and Evaluation of an Ensemble‐Based Data Assimilation System for Regional Reanalysis Over the Tibetan Plateau and Surrounding Regions. Journal of Advances in Modeling Earth Systems, 11(8), 2503–2522. https://doi.org/10.1029/2019MS001665

Helmus, J. and Collis, S., 2016: The Python ARM Radar Toolkit (Py-ART), a library for working with weather radar data in the Python programming language. Journal of Open Research Software, 4 (1). http://doi.org/10.5334/jors.119

Hersbach, H., y coautores, 2023: ERA5 hourly data on pressure levels from 1940 to present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS). https://doi.org/10.24381/cds.bd0915c6

Hong, S.Y., and J.O.J. Lim, 2006: The WRF single–moment 6–class microphysics scheme (WSM6). J. Korean Meteor. Soc., 42, 129–151.

Hong, S.Y., Y. Noh, J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 2318–2341. https://doi.org/10.1175/MWR3199.1

Hobouchian, M.P., y coautores, 2021: Ajuste de la estimación de precipitación satelital IMERG con observaciones pluviométricas en Argentina. Nota Técnica SMN 2021-105. http://hdl.handle.net/20.500.12160/1694

Huffman, G.J., y coautores, 2020: Integrated Multi-satellite Retrievals for the Global Precipitation Measurement (GPM) Mission (IMERG). Satellite Precipitation Measurement. Advances in Global Change Research, 67, Springer. https://doi.org/10.1007/978-3-030-24568-9_19

Hunt, B.R., E.J. Kostelich, I. Szunyogh, 2007: Efficient data assimilation for spatiotemporal chaos: a local ensemble transform Kalman filter. Phys. D: Nonlinear Phenom. 230, 112–126. https://doi.org/10.1016/j.physd.2006.11.008

Iacono, y coautores, 2008: Radiative forcing by long–lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res., 113, D13103. https://doi.org/10.1029/2008JD009944

Janjic, Z. I., 1994: The Step–Mountain Eta Coordinate Model: Further developments of the convection, viscous sublayer, and turbulence closure schemes. Mon. Wea. Rev., 122, 927–945. https://doi.org/10.1175/1520-0493(1994)122<0927:TSMECM>2.0.CO;2

Janjic, Z. I., 2002: Nonsingular implementation of the Mellor-Yamada Level 2.5 Scheme in the NCEP Meso model. NCEP Office Note No. 437, 61 pp.

Jimenez, P.A., y coautores, 2012: A revised scheme for the WRF surface layer formulation. Mon. Wea. Rev., 140, 898–918. https://doi.org/10.1175/MWR-D-11-00056.1

Kalnay, E., 2003: Atmospheric Modeling, Data Assimilation and Predictability. Cambridge University Press, 341 págs. https://doi.org/10.1017/CBO9780511802270

Magnusson, L., y coautores, 2022: Skill of Medium-Range Forecast Models Using the Same Initial Conditions. Bull. Amer. Meteor. Soc., 103, E2050–E2068. https://doi.org/10.1175/BAMS-D-21-0234.1

Maldonado, P., 2023: Implementación y evaluación de un sistema de asimilación de datos de radar meteorológico en escala convectiva para el desarrollo de un sistema de pronóstico por ensambles a muy corto plazo. Tesis de doctorado, DCAO, FCEyN, UBA.

https://hdl.handle.net/20.500.12110/tesis_n7321_Maldonado

Maldonado, P., y coautores, 2022: Sistema de asimilación de datos y pronóstico numérico del Servicio Meteorológico Nacional: componente experimental. Características y ajustes. XIV Congreso Argentino de Meteorología. 7 al 11 de noviembre, 2022.

Maldonado, P., J. Ruiz, C. Saulo, 2020: Parameter sensitivity of the WRF–LETKF system for assimilation of radar observations: Imperfect-model observing system simulation experiments; American Meteorological Society; Wea. Forecasting, 35, 4, 5-2020, 1345-13620882-8156. https://doi.org/10.1175/WAF-D-19-0161.1

Matsudo, C., y coautores, 2022: Sistema de asimilación de datos y pronóstico numérico del Servicio Meteorológico Nacional: componente operativa. XIV Congreso Argentino de Meteorología. 7 al 11 de noviembre, 2022.

Matsudo, C., y Salio, P., 2011: Severe weather reports and proximity to deep convection over Northern Argentina. Atmospheric research, 100 (4), 523–537. https://doi.org/10.1016/j.atmosres.2010.11.004

Mezher, R., M. Doyle, and V. Barros, 2012: Climatology of hail in Argentina. Atmospheric research, 114, 70–82. http://doi.org/10.1016/j.atmosres.2012.05.020

Miyoshi, T., M. Kunii, 2011: The local ensemble transform Kalman filter with the Weather Research and Forecasting Model: Experiments with real observations. Pure Appl. Geophys., 169, 321–333. https://doi.org/10.1007/s00024-016-1269-0

Niu, G.Y., y coautores, 2011: The community Noah land surface model with multiparameterization options (Noah–MP): 1. Model description and evaluation with local–scale measurements. J. Geophys. Res., 116, D12109. https://doi.org/10.1029/2010JD015140

Roberts, N.M. and H. Lean, 2008: Scale-selective verification of rainfall accumulations from high-resolution forecasts of convective events. Mon. Wea. Rev., 136, 78–97. https://doi.org/10.1175/2007MWR2123.1

Roebber, P.J., 2009: Visualizing multiple measures of forecast quality. Wea. Forecasting, 24, 601-608. https://doi.org/10.1175/2008WAF2222159.1

Salio, P., M. Nicolini, E.J. Zipser, 2007: Mesoscale convective systems over southeastern South America and their relationship with the South American low-level jet. Mon. Wea. Rev. https://doi.org/10.1175/MWR3305.1

Saucedo, M., 2016: Estudio de los efectos de diferentes fuentes de error sobre la calidad de los análisis generados por un sistema de asimilación por filtros de Kalman. Tesis de doctorado, DCAO, FCEyN, UBA. https://hdl.handle.net/20.500.12110/tesis_n5939_Saucedo

Schumacher, V., A. Fernánde., F. Justino, A. Comin, 2020: WRF high resolution dynamical downscaling of precipitation for the Central Andes of Chile and Argentina. Frontiers in Earth Science, 328. https://doi.org/10.3389/feart.2020.00328

Schwartz, C., J. Poterjoy, J. Carley, D. Dowell, G. Romine, K. Ide, 2022: Comparing Partial and Continuously Cycling Ensemble Kalman Filter Data Assimilation Systems for Convection-Allowing Ensemble Forecast Initialization. Wea. Forecasting, 37, 85–112. https://doi.org/10.1175/WAF-D-21-0069.1

Shin, H.H., and S.Y. Hong, 2015: Representation of the subgrid-scale turbulent transport in convective boundary layers at gray-zone resolutions. Mon. Wea. Rev., 143, 250-271. https://doi.org/10.1175/MWR-D-14-00116.1

Skamarock, W., J. Klemp, J. Dudhi, D. Gill, Z. Liu, J. Berner, X.Y. Huang, 2019: A description of the advanced research WRF model version 4. National Center for Atmospheric Research: Boulder, CO, USA, 145(145), 550.

Su, C.H., y coautores, 2019: BARRA v1.0: the Bureau of Meteorology Atmospheric high-resolution Regional Reanalysis for Australia, Geosci. Model Dev., 12, 2049–2068.

Trapp, R.J., y coautores, 2020: Multiple-Platform and Multiple-Doppler Radar observations of a Supercell Thunderstorm in South America during RELAMPAGO. Monthly Weather Review 148, 3225–3241. https://doi.org/10.1175/MWR-D-20-0125.1

Warner, T.T., R.A. Peterson, R.E. Treadon, 1997: A tutorial on lateral boundary conditions as a basic and potentially serious limitation to regional numerical weather prediction. Bull. Amer. Meteor. Soc., 78, 2599–2617.

DOI: https://doi.org/10.1175/1520-0477(1997)078<2599:ATOLBC>2.0.CO;2.

Wilks, D.S., 1995: Statistical Methods in the Atmospheric Sciences. Academic Press, San Diego, 467 p.

Yañez, D., 2023: Validación de pronósticos probabilísticos en alta resolución generados a partir del Sistema de Asimilación de Datos y Pronóstico Numérico del Servicio Meteorológico Nacional. Tesis de licenciatura, DCAO, FCEyN, UBA.

Zhou, X., Y. Zhu, D. Hou, Y. Luo, J. Peng, R. Wobus, 2017: Performance of the New NCEP Global Ensemble Forecast System in a parallel Experiment. Weather Forecast. 32, 1989–2004. DOI: https://doi.org/10.1175/WAF-D-17-0023.1.

Zipser, E.J., D.J. Cecil, C. Liu, S. Nesbitt, D. Yorty, 2006: Where are the most intense thunderstorms on earth? Bulletin of the American Meteorological Society, 87 (8), 1057–1072. DOI: https://doi.org/10.1175/BAMS-87-8-1057.

Published

2024-06-28

Issue

Section

Artículos