Evaluation of the analog method for daily precipitation simulation in a complex orography region

Authors

  • Federico Gomez Universidad de Buenos Aires, Argentina
  • María Laura Bettolli Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad de Buenos Aires, Argentina

DOI:

https://doi.org/10.24215/1850468Xe031

Keywords:

ERA-Interim, Central Andes, Argentina, Chile, statistical downscaling

Abstract

Global Climate Models (GCMs) are the main tool available to predict future climate scenarios, nevertheless their performance of GCMs might be hindered by their limited spatial resolution in complex orography regions, such as the Central Andes. In this paper, possible added value via statistical downscaling modeling for daily precipitation in Central Andes region was explored. Data from 83 rain gauge stations in the period 1981-2015 was used in order to calibrate an analog method employing ERA-Interim reanalysis. Statistical downscaling models proved to be more accurate than reanalysis precipitation raw data, particularly for mean precipitation values and variables built on a daily basis. Models based on information from local atmospheric predictors showed better performances than those built on large scale data simplified via principal component analysis. Performance of downscaling models was not even throughout the domain, showing more accurate results in Southern Chilean stations. This was probably due to synoptic forcing being well captured by downscaling models. Precipitation variability at different time scales (intraannual, interannual and long-term tendencies) was successfully replicated by statistical models.

Downloads

Download data is not yet available.

References

Aniley, E.; Gashaw, T.; Abraham, T.; Demessie, S.F.; Bayabil, H.K.; Worqlul, A.W.; van Oel, P.R.; Dile, Y.T.; Chukalla, A.D.; Haileslassie A.; Wubaye, G.B.; 2023: Evaluating the performances of gridded satellite/reanalysis products in representing the rainfall climatology of Ethiopia, Geocarto International, 38:1, 2278329. https://doi.org/10.1080/10106049.2023.2278329

Araneo, D. C., Compagnucci, R. H.; 2008: Atmospheric circulation features associated to Argentinean Andean rivers discharge variability, Geophys. Res. Lett., 35, L01805. https://doi.org/10.1029/2007GL032427

Araneo, D.; Villalba, R.; 2014: Variability in the annual cycle of the Río Atuel streamflows and its relationship with tropospheric circulation, Int. J. Climatol. https://doi.org/10.1002/joc.4185

Araya-Osses, D.; Casanueva, A.; Román-Figueroa, C.; Uribe, J.M.; Paneque, M.; 2020: Climate change projections of temperature and precipitation in Chile based on statistical downscaling, Climate Dynamics (2020) 54:4309–4330. https://doi.org/10.1007/s00382-020-05231-4

Balmaceda-Huarte, R.; Olmo, M.E.; Bettolli, M.L.; Poggi, M.M.; 2021: Evaluation of multiple reanalyses in reproducing the spatio-temporal variability of temperature and precipitation indices over southern South America. Int J Climatol. 41, 5572–5595. https://doi.org/10.1002/joc.7142

Balmaceda-Huarte, R.; Bettolli, M.L.; 2022: Assessing statistical downscaling in Argentina: Daily maximum and minimum temperatures, Int J Climatol. 2022;42:8423–8445. https://doi.org/10.1002/joc.7733

Basist, A., Bell, G.D., Meentemeyer, V., 1994: Statistical Relationships between Topography and Precipitation Patterns, Journal of Climate 7:1305-1315.

Bedía, J., Baño-Medina, J., Legasa, M.N., Iturbide, M., Manzanas, R., Herrera, S., Casanueva, A., San-Martín, D., Cofiño, A.S., Gutiérrez, J.M., 2019: Statistical downscaling with the downscaleR package: Contribution to the VALUE intercomparison experiment. https://doi.org/10.5194/gmd-2019-224.

Bettolli, M.L. y Penalba, O.C., 2018: Statistical downscaling of daily precipitation and temperatures in southern La Plata Basin, International Journal of Climatology 2018:1-18. https://doi.org/10.1002/joc.5531

Boisier, J.P.; Alvarez-Garreton, C.; Cordero, R.; Damiani, A.; Gallardo, L.; Garreaud, R.D.; Lambert, F.; Ramallo, C.; Rojas, M.; Rondanelli, R.; 2018: Anthropogenic drying in central-southern Chile evidenced by long-term observations and climate model simulations, Elem Sci Anth, 6: 74. https://doi.org/10.1525/elementa.328

Bonelli, S.; Vicuña, S.; Meza, F.J.; Gironás, J.; Barton, J.; 2014: Incorporating climate change adaptation strategies in urban water supply planning: the case of central Chile, Journal of Water and Climate Change 05.3:357-376. https://doi.org/10.2166/wcc.2014.037

Bozkurt, D.; Rojas, M.; Boisier, J.P.; Valdivieso, J.; 2018: Projected hydroclimate changes over Andean basins in central Chile from downscaled CMIP5 models under the low and high emission scenarios, Climatic Change (2018) 150:131–147. https://doi.org/10.1007/s10584-018-2246-7

Bravo, C.; Loriaux, T.; Rivera, A.; Brock, B. W.; 2017: Assessing glacier melt contribution to streamflow at Universidad Glacier, central Andes of Chile, Hydrol. Earth Syst. Sci., 21, 3249–3266. https://doi.org/10.5194/hess-21-3249-2017

Chen, D. y Dai, A.; 2019: Precipitation Characteristics in the Community Atmosphere Model and Their Dependence on Model Physics and Resolution, Journal of Advances in Modeling Earth Systems, 11, 2352–2374. https://doi.org/10.1029/2018MS001536

Dee, DP; Uppala, SM; Simmons, AJ; Berrisford, P; Poli, P; Kobayashi, S; Andrae, U; Balmaseda, MA; Balsamo, G; Bauer, P; Bechtold, P; Beljaars, ACM; van de Berg, L; Bidlot, J; Bormann, N; Delsol, C; Dragani, R; Fuentes, M; Geer, AJ; Haimberger, L; Healy, SB; Hersbach, H; Hólm, EV; Isaksen, L; Kållberg, P; Köhler, M; Matricardi, M; McNally, AP; Monge-Sanz, BM; Morcrette, JJ; Park, BK; Peubey, C; de Rosnay, P; Tavolato, C; Thépaut, JN; Vitart, F; 2011: The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q J Roy Meteorol Soc 137:553–597. https://doi.org/10.1002/qj.828

Falvey, M., Garreaud, R., 2007: Wintertime Precipitation Episodes in Central Chile: Associated Meteorological Conditions and Orographic Influences, Journal of Hidrometeorology 8:171-193. https://doi.org/10.1175/JHM562.1

Fuentealba, M.; Bahamóndez, C.; Sarricolea, P.; Meseguer-Ruiz, O.; Latorre, C.; 2021: The 2010–2020 ’megadrought’ drives reduction in lake surface area in the Andes of central Chile (32° - 36°S), Journal of Hydrology: Regional Studies 38. https://doi.org/10.1016/j.ejrh.2021.100952

Garreaud R.D., 2009: The Andes climate and weather, Advances in Geosciences 7:1-9.

Garreaud, R.; Álvarez-Garreton, C.; Barichivich, J.; Boisier, J.P.; Christie, D.; Galleguillos, M.; LeQuesne, C.; McPhee, J.; Zambrano-Bigiarini, M.; 2017: The 2010–2015 megadrought in central Chile: impacts on regional hydroclimate and vegetation, Hydrol. Earth Syst. Sci., 21, 6307–6327, 2017. https://doi.org/10.5194/hess-21-6307-2017

Garreaud, R.D; Boisier, J.P.; Rondanelli, R.; Montecinos, A.; Sepúlveda, H.; Veloso-Aguila, D.; 2019: The Central Chile Mega Drought (2010–2018): A climate dynamics perspective, Int J Climatol. 2020;40:421–439. https://doi.org/10.1002/joc.6219

Gutowski, J.W.; Giorgi, F.; Timbal, B.; Frigon, A.; Jacob, D.; Kang, H.S.; Raghavan, K.; Lee, B.; Lennard, C.; Nikulin, G.; O’Rourke, E.; Rixen, M.; Solman, S.; Stephenson, T.; Tangang, F.; 2016: WCRP COordinated Regional Downscaling EXperiment (CORDEX): a diagnostic MIP for CMIP6. Geosci Model Dev 9(11):4087–4095. https://doi.org/10.5194/gmd-9-4087-2016

Horton, P.; Brönnimann, S.; 2018: Impact of global atmospheric reanalyses on statistical precipitation downscaling, Climate Dynamics. https://doi.org/10.1007/s00382-018-4442-6

Horton, P.; 2021: Analogue methods and ERA5: Benefits and pitfalls, Int J Climatol. 2022;42:4078–4096. https://doi.org/10.1002/joc.7484

INDEC, 2022: Censo nacional de población, hogares y viviendas 2022: resultados provisionales / 1a ed.

Instituto Nacional de Estadísticas, 2018: Síntesis de Resultados Censo 2017 de Chile. https://www.ine.gob.cl/estadisticas/sociales/censos-de-poblacion-y-vivienda/censo-de-poblacion-y-vivienda

Labraga, J.C., 2010: Statistical downscaling estimation of recent rainfall trends, in the eastern slope of the Andes mountain range in Argentina, Theorical and Applicated Climatology 99,287–302. https://doi.org/10.1007/s00704-009-0145-6

Maraun, D.; Huth, ,R.; Gutiérrez, J.M.; San Martín, D.; Dubrovsky, M.; Fischer, A.; Hertig, E.; Soares, P.M.M.; Bartholy, J.; Pongrácz, R.; Widmann, M.; Casado, M.J.; Ramos, P.; Bedia, J.; 2019: The VALUE perfect predictor experiment: Evaluation of temporal variability, Int. J. Climatol. 2017;1–33. https://doi.org/10.1002/joc.5222

Montecinos, A., Díaz, A., Aceituno, P., 2000: Seasonal Diagnostic and Predictability of Rainfall in Subtropical South America Based on Tropical Pacific SST, Journal of Climate 13:746-758.

Müller, G. y Lovino, M.; 2023: Variability and Changes in Temperature, Precipitation and Snow in the Desaguadero-Salado-Chadileuvú-Curacó Basin, Argentina, Climate 2023, 11, 135. https://doi.org/10.3390/cli11070135

Mutz, S.; Scherrer, S.; Muceniece, I.; Ehlers, T.; 2021: Twenty‐first century regional temperature response in Chile based on empirical‐statistical downscaling, Climate Dynamics (2021) 56:2881–2894. https://doi.org/10.1007/s00382-020-05620-9

Navarro-Racines, C.; Tarapues, J.; Thornton, P.; Jarvis, A.; Ramirez-Villegas, J.; 2020: High-resolution and bias-corrected CMIP5 projections for climate change impact assessments, Scientific Data (2020) 7:7. https://doi.org/10.1038/s41597-019-0343-8

Olmo, M., Bettolli M.L., 2021: Statistical downscaling of daily precipitation over southeastern South America: assessing the performance in extreme events, International Journal of Climatology 42(2),1283–1302. https://doi.org/10.1002/joc.7303

Penalba, O. y Vargas, W.; 2004: Interdecadal and Interannual Variations of Annual and Extreme Precipitation over Central-Northeastern Argentina, Int. J. Climatol. 24: 1565–1580 (2004). https://doi.org/10.1002/joc.1069

Rivera, J.A.; Araneo, D.; Penalba, O.; 2017: Threshold level approach for streamflow drought analysis in the Central Andes of Argentina: a climatological assessment, Hydrological Sciences Journal, 62:12, 1949-1964. https://doi.org/10.1080/02626667.2017.1367095

Singh, V.P., Lee, T., 2018: Statistical Downscaling for Hydrological and Environmental Applications, 181 págs.

Timbal, B., Dufour, A., McAvaney, B., 2004: An estimate of future climate change for western France using a statistical downscaling technique. Climate Dynamics, 20, 807–823.

Viale, M., Garreaud, R., 2014: Summer Precipitation Events over the Western Slope of the Subtropical Andes, Monthly Weather Review 142:1074-1092. https://doi.org/10.1175/MWR-D-13-00259.1

Viale, M., Nuñez, M.N., 2011: Climatology of Winter Orographic Precipitation over the Subtropical Central Andes and Associated Synoptic and Regional Characteristics, Journal of Hydrometeorology 12:481-507. https://doi.org/10.1175/2010JHM1284.1

Wilby, R.L., Dawson, C.W., Barrow, E.M., 2002: SDSM — a decision support tool for the assessment of regional climate change impacts, Environmental Modelling & Software 17:147–159.

Wilks, D.S., 1995: Statistical Methods in the Atmospheric Sciences. Academic Press, San Diego, 467 págs.

Wold, S., Esbensen, K., Geladi, P., 1987: Principal Component Analysis, Chemometrics and Intelligent Laboratory Systems 2:37-52.

Zazulie, N.; Rusticucci, M.; Raga, G.; 2017: Regional climate of the subtropical central Andes using high-resolution CMIP5 models—part I: past performance (1980–2005), Clim Dyn (2017) 49:3937–3957. https://doi.org/10.1007/s00382-017-3560-x

Zorita, E., von Storch, H., 1999: The Analog Method as a Simple Statistical Downscaling Technique: Comparison with More Complicated Methods, Journal of Climate 12:2474-2489.

Published

2024-06-28

Issue

Section

Artículos