Tropical-Subtropical South American midsummer precipitation under ENSO events

Authors

  • Santiago I. Hurtado Instituto Nacional de Tecnología Agropecuaria, Consejo Nacional de Investigaciones Científicas y T´ecnicas (CONICET), Universidad Nacional de La Plata, Argentina
  • Eduardo A. Agosta Universidad Nacional de La Plata, Consejo Nacional de Investigaciones Cient´íficas y T´écnicas (CONICET), Argentina
  • Pablo G. Zaninelli Universidad Nacional de La Plata, Consejo Nacional de Investigaciones Cient´íficas y T´écnicas (CONICET), Argentina, Universidad Complutense de Madrid, España

DOI:

https://doi.org/10.24215/1850468Xe027

Keywords:

ENSO, teleconnection, midsummer precipitation, SESA, SACZ

Abstract

El Ni˜no-Southern Oscillation (ENSO) is the major forcing of interannual precipitation variability over South America (SA), especially from September to December, through a convection dipole over the South Atlantic Convergence Zone (SACZ) region and southeastern SA (SESA). However, the forcing mechanisms for midsummer (January) precipitation under ENSO events is less known. A cluster analysis applied to January OLR anomalies over Tropical-Subtropical SA under ENSO events depicts two clusters linked to the signs of the convection dipole between SACZ region and SESA. Most La Ni˜na (LN) events (10 out of 13 events) are associated with enhanced convection over SESA and inhibited convection over SACZ region in January. El Ni˜ño (EN) events show both signs of the convection dipole in equal proportions, evidencing a non-linear response. In January, for EN and LN, enhanced (inhibited) convection over SESA and inhibited (enhanced) convection over SACZ region are associated with anticyclonic (cyclonic) tropospheric circulation over southeast Brazil, as observed in EN (LN) spring. During LN events, lower tropospheric circulation in January depends on the local thermodynamic conditions over central east Brazil in the previous months (Nov-Dec). If there are dry and warm (wet and cold) conditions over central east Brazil in Nov-Dec, a thermal low (high) sets up. In contrast, under EN events if the dry and warm conditions over east Brazil in Nov-Dec are overall weak, an anticyclonic tropospheric circulation is established in southeast Brazil in January due to a predominant large-scale anomalous Walker cell. Lastly, the studied relationship may be used to build and assess sub-seasonal forecasting tools for January precipitation anomalies.

Downloads

Download data is not yet available.

References

Alvarez, M.S., Vera, C.S., Kiladis, G.N., Liebmann, B., 2016: Influence of the madden julian oscillation on precipitation and surface air temperature in south america. Climate Dynamics 46(1-2): 245–262

Cai, W., McPhaden, M.J., Grimm, A.M., Rodrigues, R.R., Taschetto, A.S., Garreaud, R.D., Dewitte, B., Poveda, G., Ham, Y.G., Santoso, A., et al, 2020: Climate impacts of the el ni˜no–southern oscillation on south america. Nature Reviews Earth & Environment 1(4):215–231, https://doi.org/10.1038/s43017-020-0040-3

Campitelli, E., 2020: metR: Tools for Easier Analysis of Meteorological Fields. https://doi.org/10.5281/zenodo.2593516, https://github.com/eliocamp/metR, r package version 0.8.0

Cazes-Boezio, G., Robertson, A.W., Mechoso, C.R., 2003: Seasonal dependence of enso teleconnections over south america and relationships with precipitation in uruguay. Journal of Climate 16(8):1159–1176

Dinh, D.T., Fujinami, T., Huynh, V.N., 2019: Estimating the optimal number of clusters in categorical data clustering by silhouette coefficient. In: International Symposium on Knowledge and Systems Sciences, Springer, pp 1–17

Grimm, A.M., 2003: The el ni˜no impact on the summer monsoon in brazil: regional processes versus remote influences. Journal of Climate 16(2):263–280

Grimm, A. M., 2004: How do La Ni˜ña events disturb the summer monsoon system in Brazil? Climate Dynamics, 22(2-3), 123-138.

Grimm, A.M., 2011: Interannual climate variability in south america: impacts on seasonal precipitation, extreme events, and possible effects of climate change. Stochastic Environmental Research and Risk Assessment 25(4):537–554

Grimm, A.M., Zilli, M.T., 2009: Interannual variability and seasonal evolution of summer monsoon rainfall in south america. Journal of Climate 22(9):2257–2275

Grimm, A.M., Pal, J.S., Giorgi, F., 2007: Connection between spring conditions and peak summer monsoon rainfall in south america: Role of soil moisture, surface temperature, and topography in eastern brazil. Journal of Climate 20(24):5929–5945

Harris, I., Osborn, T.J., Jones, P., et al., 2020: Version4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. Sci Data 7, 109. https://doi.org/10.1038/s41597-020-0453-3

Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horanyi, A., Mu˜ñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Rozum, I., et al., 2019a: Era5 monthly averaged data on pressure levels from 1979 to present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS) 10

Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horanyi, A., Mu˜ñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Rozum, I., et al., 2019b: Era5 monthly averaged data on single levels from 1979 to present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS) 10

Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horanyi, A., Mu˜ñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., et al., 2020: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society, https://doi.org/10.1002/qj.3803

Hurtado, S.I., Agosta, E.A., 2021: El ni˜ño southern oscillation-related precipitation anomaly variability over eastern subtropical south america: Atypical precipitation seasons. International Journal of Climatology. https://doi.org/10.1002/joc.6559

Hurtado, S. I., Agosta, E. A., Zaninelli, P. G., 2023: Monthly variations of forcing mechanisms of austral summer precipitation in subtropical Argentina. Atmospheric Research, 106609. https://doi.org/10.1016/j.atmosres.2023.106609

Junquas, C., Vera, C., Li, L., Le Treut, H., 2012: Summer precipitation variability over southeastern south america in a global warming scenario. Climate dynamics 38(9):1867–1883

Liebmann, B., Smith, C.A., 1996: Description of a complete (interpolated) outgoing longwave radiation dataset. Bulletin of the American Meteorological Society 77(6):1275–1277

Ma, H.Y., Ji, X., Neelin, J., Mechoso, C., 2011: Mechanisms for precipitation variability of the eastern brazil/sacz convective margin. Journal of Climate 24(13):3445–3456

Marshall, G. J., 2003: Trends in the Southern Annular Mode from observations and reanalyses. Journal of Climate, 16, 4134-4143, https://doi.org/10.1175/1520-0442(2003)016<4134:TITSAM>2.0.CO;2

Montini, T.L., Jones, C., Carvalho, L.M., 2019: The south american low-level jet: a new climatology, variability, and changes. Journal of Geophysical Research: Atmospheres 124(3):1200–1218

Moser, B.K., Stevens, G.R., 1992: Homogeneity of variance in the two-sample means test. The American Statistician 46(1):19–21

Mouselimis, L., 2022: ClusterR: Gaussian Mixture Models, K-Means, Mini-Batch-Kmeans, K- Medoids and Affinity Propagation Clustering. https://CRAN.Rproject.org/package=ClusterR, r package version 1.2.6

Pedersen, T.L., 2020: ggforce: Accelerating ’ggplot2’. https://CRAN.Rproject.org/package=ggforce, r package version 0.3.2

Reboita, M. S., Ambrizzi, T., Crespo, N. M., Dutra, L. M. M., Ferreira, G. W. D. S., Rehbein, A., et al., 2021: Impacts of teleconnection patterns on South America climate. Annals of the New York Academy of Sciences, 1504(1), 116-153, https://doi.org/10.1111/nyas.14592

Saji, N. H., Yamagata, T. J. C. R., 2003: Possible impacts of Indian Ocean dipole mode events on global climate. Climate Research, 25(2), 151-169.

Takaya, K., Nakamura, H., 2001: A formulation of a phase-independent wave-activity flux for stationary and migratory quasigeostrophic eddies on a zonally varying basic flow. Journal of the Atmospheric Sciences 58(6):608–627

Tedeschi, R.G., Grimm, A.M., Cavalcanti, I.F., 2015: Influence of central and east enso on extreme events of precipitation in south america during austral spring and summer. International Journal of Climatology, 35(8):2045–2064

van den Brand, T., 2020: ggh4x: Hacks for ’ggplot2’. https://github.com/teunbrand/ ggh4x, r package version 0.1.0.9000

Van Der Wiel, K., Matthews, A.J., Stevens, D.P., Joshi, M.M., 2015: A dynamical framework for the origin of the diagonal south pacific and south atlantic convergence zones. Quarterly Journal of the Royal Meteorological Society 141(691):1997–2010, https://doi.org/10.1002/qj.2508

Vera, C. S., Osman, M., 2018: Activity of the Southern Annular Mode during 2015–2016 El Ni˜ no event and its impact on Southern Hemisphere climate anomalies. International Journal of Climatology, 38, e1288-e1295.

Vera, C., Higgins, W., Amador, J., Ambrizzi, T., Garreaud, R., Gochis, D., Gutzler, D., Lettenmaier, D., Marengo, J., Mechoso, C., et al., 2006: Toward a unified view of the american monsoon systems. Journal of climate 19(20):4977–5000

Wickham, H., 2016: ggplot2: elegant graphics for data analysis. springer

Wickham, H., Francois, R., Henry, L., Muller, K., 2022: dplyr: A Grammar of Data Manipulation. https://CRAN.R-project.org/package=dplyr, r package version 1.0.9

Downloads

Published

2024-05-27

Issue

Section

Artículos