Characterization and interannual variation of air quality in the city of Buenos Aires relative to the new WHO guidelines

Authors

  • Caterina Mosto Centro de Investigaciones del Mar y la Atmósfera, Argentina
  • Andrea L. Pineda Rojas Centro de Investigaciones del Mar y la Atmósfera, Argentina
  • Néstor Rojas Universidad Nacional de Colombia, Colombia

DOI:

https://doi.org/10.24215/1850468Xe030

Keywords:

air quality data, trend analysis, wind

Abstract

The World Health Organization (WHO) updated its air quality guidelines in September 2021. The daily and annual mean concentrations of nitrogen dioxide (NO2) and particulate matter with a diameter of less than 10 µm (PM10) measured at the three air quality monitoring stations in the city of Buenos Aires frequently exceed the new WHO air quality guideline (AQG) levels in the period 2010-2019. A trend analysis reveals a significant decrease in the annual mean PM10 concentration of 1.6 µg m-3 yr-1 and a consistent reduction in the frequency of exceedances of the daily AQG of 1.6 % yr-1 at the urban background station. In contrast, NO2 concentrations show slight positive trends at all three monitoring sites that could become statistically significant as new data become available. For both pollutants, the strong linear relationships between annual mean concentrations and their daily exceedance frequencies suggest that the new annual AQG levels are stricter than their corresponding daily limits, although these results are sensitive to the data set used. On the other hand, daily average concentrations of carbon monoxide (CO) are below the new AQG, with slight non-significant positive interannual trends at two of the sites. When the daily hourly wind sequence is used as a classification variable, marked differences in the concentration levels of the three pollutants with different wind patterns are obtained, which are maintained over the years, highlighting the role of local sources in the trends. In some cases, pronounced interannual variations are observed with specific wind patterns, suggesting the impact of new or more intense sources from specific wind sectors. Further efforts in monitoring and in developing high-resolution pollutant emission inventories will contribute to understanding the causes of these variations and to assessing air quality across the metropolitan area.

Downloads

Download data is not yet available.

References

Arkouli, M., Ulke, A. G., Endlicher, W., Baumbach, G., Schultz, E., Vogt, U., Müller, M., Dawidowski, L., Faggi, A., Wolf-Benning, U., Scheffknecht, G., 2010: Distribution and temporal behavior of particulate matter over the urban area of Buenos Aires. Atmos. Pollut. Res., 1, 1–8. https://doi.org/10.5094/APR.2010.001

Barmpadimos, I., Keller, J., Oderbolz, D., Hueglin, C., Prévôt, A. S. H., 2012: One decade of parallel fine (PM2.5) and coarse (PM10–PM2.5) particulate matter measurements in Europe: trends and variability. Atmos. Chem. Phys, 12(7), 3189-3203. https://doi.org/10.5194/acp-12-3189-2012

Bogo, H., Otero, M., Castro, P., Ozafr, M. J., Calvo, E. J., Mart, R., 2003:. Study of atmospheric particulate matter in Buenos Aires city. Atmos. Environ., 37, 1135–1147. https://doi.org/10.1016/S1352-2310(02)00977-9

Carslaw, D. C., 2005: Evidence of an increasing NO2/NOx emissions ratio from road traffic emissions. Atmos. Environ.,39, 4793–4802.

Carslaw, D. C. and Beevers, S. D., 2013: Characterising and understanding emission sources using bivariate polar plots and k-means clustering. Environ. Model. Softw., 40, 325-329. https://doi.org/10.1016/j.envsoft.2012.09.005

Carslaw, D. C., and Ropkins, K., 2012: Openair—an R package for air quality data analysis. Environ. Model. Softw., 27, 52-61. https://doi.org/10.1016/j.envsoft.2011.09.008

EEA, 2020: Air Quality in Europe – 2020, European Environment Agency (EEA) Report No 09/2020, Luxembourg, 164 pp. https://data.europa.eu/doi/10.2800/786656

Kendall, T., 1975: Rank Correlation Methods. 4th ed. Charles Griffin, London, UK., 202 pp.

Lang, P. E., Carslaw, D. C.,Moller, S. J., 2019: A trend analysis approach for air quality network data. Atmos. Environ.: X, 2, 100030. https://doi.org/10.1016/j.aeaoa.2019.100030

Mann, H. B., 1945: Nonparametric tests against trend. Econometrica, 13,245-259. https://doi.org/10.2307/1907187

Mavroidis, I., Chaloulakou, A., 2011: Long-term trends of primary and secondary NO2 production in the Athens area. Variation of the NO2/NOx ratio. Atmos. Environ., 45(38), 6872-6879. https://doi.org/10.1016/j.atmosenv.2010.11.006

Mazzeo, N.A., Venegas, L.E., 2012: Hourly NOx concentrations and wind direction in the vicinity of a street intersection. Int. J. Environ. Pollut. 48 (1–4), 96–104. https://doi.org/10.1504/IJEP.2012.049656

Mazzeo, N.A., Venegas, L.E., Choren. H., 2005: Analysis of NO, NO2, O3 and NOx concentrations measured at a green area of Buenos Aires City during wintertime. Atmos. Environ., 39, pp. 3055-3068. https://doi.org/10.1016/j.atmosenv.2005.01.029

Merino, R. A., Gassmann, M. I., 2022: Wind trends analysis in southern South America from weather station and reanalysis data. Int. J. Climatol., 42(4), 2117-2134. https://doi.org/10.1002/joc.7355

Munir, S., Habeebullah, T. M., Seroji, A. R., Gabr, S. S., Mohammed, A. M., Morsy, E. A., 2013: Quantifying temporal trends of atmospheric pollutants in Makkah (1997–2012). Atmos. Environ., 77, 647-655. https://doi.org/10.1016/j.atmosenv.2013.05.075

Peláez, L. M. G., Santos, J. M., de Almeida Albuquerque, T. T., Reis Jr, N. C., Andreão, W. L., de Andrade, F. M., 2020: Air quality status and trends over large cities in South America. Environ Sci Policy, 114, 422-435. https://doi.org/10.1016/j.envsci.2020.09.009

Pineda Rojas A.L., Borge R., Kropff E., 2022: Characterisation of errors in an urban scale atmospheric dispersion model through clustering of performance metrics. Air Quality, Atmosphere & Health. https://doi.org/10.1007/s11869-021-01145-0

Pineda Rojas, A.L., Borge, R., Mazzeo, N.A., Saurral, R.I., Matarazzo, B.N., Cordero, J.M., Kropff, E., 2020: High PM10 concentrations in the city of Buenos Aires and their relationship with meteorological conditions. Atmos. Environ., 214, 117773. https://doi.org/10.1016/j.atmosenv.2020.117773

Querol, X., Alastuey, A., Pandolfi, M., Reche, C., Pérez, N., Minguillón, M.C., Moreno, T., Viana, M., Escudero, M., Orio, A., Pallarés, M., Reina, F., 2014: 2001–2012 trends on air quality in Spain. Sci. Total Environ., 490, 957-969. https://doi.org/10.1016/j.scitotenv.2014.05.074

Salvador, P., Artíñano, B., Viana, M., Alastuey, A., Querol, X., 2012: Evaluation of the changes in the Madrid metropolitan area influencing air quality: Analysis of 1999–2008 temporal trend of particulate matter. Atmos. Environ., 57, 175-185. https://doi.org/10.1016/j.atmosenv.2012.04.026

Sen, P. K., 1968: Estimates of the regression coefficient based on Kendall's tau. J. Am. Stat. Assoc., 63(324), 1379-1389.

Silva, J., Rojas, J., Norabuena, M., Molina, C., Toro, R. A., Leiva-Guzmán, M. A., 2017: Particulate matter levels in a South American megacity: the metropolitan area of Lima-Callao, Peru. Environ. Monit. Assess., 189(12), 1-18. https://doi.org/10.1007/s10661-017-6327-2

Theil, H., 1950: A rank-invariant method of linear and polynomial regression analysis. Indag. Math., 12(85), 173.

Ulke, A. G., Torres Brizuela, M. M., Raga, G. B., Baumgardner, D., 2016: Aerosol properties and meteorological conditions in the city of Buenos Aires, Argentina, during the resuspension of volcanic ash from the Puyehue-Cordón Caulle eruption. Nat. Hazards Earth Syst. Sci., 16(9), 2159-2175. https://doi.org/10.5194/nhess-2015-311

UN, 2019: World Urbanization Prospects: the 2018 Revision. Department of Economic and Social Affairs, Population Division (ST/ESA/SER.A/420), United Nations, p.126.

Vu, T. V., Shi, Z., Cheng, J., Zhang, Q., He, K., Wang, S., Harrison, R. M., 2019: Assessing the impact of clean air action on air quality trends in Beijing using a machine learning technique. Atmos. Chem. Phys, 19(17), 11303-11314. https://doi.org/10.5194/acp-19-11303-2019

WHO, 2005: Air Quality Guidelines. Global Update 2005. Particulate Matter, Ozone, Nitrogen Dioxide and Sulfur Dioxide. Copenhagen: World Health Organization, 496 pp.

WHO, 2021: WHO global air quality guidelines: particulate matter (PM2.5 and PM10), ozone, nitrogen dioxide, sulfur dioxide and carbon monoxide. Geneva: World Health Organization, 300 pp.

Zhao, P., Tuygun, G. T., Li, B., Liu, J., Yuan, L., Luo, Y., Xiao, H., Zhou, Y., 2019: The effect of environmental regulations on air quality: A long-term trend analysis of SO2 and NO2 in the largest urban agglomeration in southwest China. Atmos. Pollut. Res., 10(6), 2030- 2039. https://doi.org/10.1016/j.apr.2019.09.011

Downloads

Published

2024-06-28 — Updated on 2024-10-14

Versions

Issue

Section

Artículos