Rx1-ENSO and Rx1-SAM relationships over Tucumán (Argentina): A centennial perspective
DOI:
https://doi.org/10.24215/1850468Xe037Keywords:
extreme rainfall, El Niño Southern Oscillation, Southern Annular Mode, floodsAbstract
This study presents an analysis of a century-long record of the December-March daily maximum precipitation (Rx1) in San Miguel de Tucumán (TUC), the most populous city in Northwestern Argentina, which is vulnerable to flooding. A significant relationship was identified between Rx1 and the El Niño Southern Oscillation (ENSO) and the Southern Annular Mode (SAM), with low-frequency influence from the Pacific Decadal Oscillation (PDO). The Atlantic Multidecadal Oscillation (AMO) does not influence this relationship based on the results obtained. A new method, based on determining the period with maximum statistical significance in the correlation coefficient, allowed for the identification of non-stationary relationships Rx1-ENSO and Rx1-SAM. Additionally, through ERA5 atmospheric variable composites, the patterns associated to the relations were analyzed. Specifically, a transition was observed from a stronger Rx1-ENSO relationship (1945-1974) to a stronger Rx1-SAM relationship (1974-2007). The effects of ENSO on Rx1 are more evident than those of SAM. The role of PDO is highlighted as responsible for the transition in the Rx1-ENSO and Rx1-SAM relationships. Particularly, in the case of ENSO during the negative phase of PDO, significant anomalies in humidity and winds at 700 hPa are observed, justifying the existence of the Rx1-ENSO relationship in TUC. Meanwhile, in the case of negative SAM during positive PDO, cyclonic anomalies over the subtropics of South America weaken the moisture flow toward TUC, resulting in lower Rx1 values. In addition to the effects on correlation, it was also found that on multidecadal scales, PDO modulates the mean values of Rx1, with higher Rx1 values observed during positive PDO.
Downloads
References
Andreoli RV, Kayano MT., 2005. ENSO-related rainfall anomalies in South America and associated circulation features during warm and cold Pacific decadal oscillation regimes. International Journal of Climatology 25: 2071-2030. https://doi.org/10.1002/joc.1222
Avashia, V., Garg, A., 2020. Implications of land use transitions and climate change on local flooding in urban areas: An assessment of 42 Indian cities. Land use policy, 95, 104571. https://doi.org/10.1016/j.landusepol.2020.104571
Bahaga, TK, Fink, AH, Knippertz, P., 2019. Revisiting interannual to decadal teleconnections influencing seasonal rainfall in the Greater Horn of Africa during the 20th century. Int J Climatol., 39: 2765- 2785. https://doi.org/10.1002/joc.5986
Barreiro, M., Diaz, N., Renom, M., 2014. Role of the global oceans and land-atmosphere interaction on summertime interdecadal variability over northern Argentina. Climate Dynamics, 42, 1733-1753. https://doi.org/10.1007/s00382-014-2088-6
Cai, W., McPhaden, M.J., Grimm, A.M. et al., 2020. Climate impacts of the El Niño Southern Oscillation on South America. Nat Rev Earth Environ 1, 215-231 (2020). https://doi.org/10.1038/s43017-020-0040-3
Cavalcanti, I. F. A., Barreto, N. J. C., Alvarez, M. S., Osman, M., & Coelho, C. A. S., 2021. Teleconnection patterns in the Southern Hemisphere represented by ECMWF and NCEP S2S project models and influences on South America precipitation. Meteorological Applications, 28(4), e2011. https://doi.org/10.1002/met.2011
de la Casa, A.C., Ovando, G.G., Díaz, G.J, 2019. Interannual variability of seasonal rainfall in Cordoba, Argentina, evaluated from ENSO and ENSO Modoki signals and verified with MODIS NDVI data. SN Appl. Sci. 1, 1624. https://doi.org/10.1007/s42452-019-1650-6
Efron, B., Tibshirani, R.J., 1993. An Introduction to the Bootstrap, Chapman and Hall/CRC, New York. https://doi.org/10.1201/9780429246593
Enfield, D.B., A.M. Mestas-Nunez, and P.J. Trimble, 2001. The Atlantic Multidecadal Oscillation and its relationship to rainfall and river flows in the continental U.S., Geophys. Res. Lett., 28: 2077-2080. https://doi.org/10.1029/2000GL012745
Fernández, D., Lutz, M., 2010. Urban flood hazard zoning in Tucumán Province, Argentina, using GIS and multicriteria decision analysis. Engineering Geology, Volume 111, Issues 1-4, 2010, Pages 90-98, ISSN 0013-7952. https://doi.org/10.1016/j.enggeo.2009.12.006
Ferrero, M.A., Villalba R., 2019. Interannual and Long-Term Precipitation Variability Along the Subtropical Mountains and Adjacent Chaco ,22-29° S: in Argentina, Front. Earth Sci., 7, 148. https://doi.org/10.3389/feart.2019.00148
Fink, A.H., Schrage, J.M., Kotthaus, S., 2010. On the potential causes of the nonstationary correlations between West African precipitation and Atlantic hurricane activity. Journal of Climate, 23, 5437-5456. https://doi.org/10.1175/2010JCLI3356.1
Fogt, RL, Marshall, GJ, 2020. The Southern Annular Mode: Variability, trends, and climate impacts across the Southern Hemisphere. WIREs Clim Change. 2020; 11:e652. https://doi.org/10.1002/wcc.652
Garbarini, EM, González, MH, Rolla, AL, 2021. Modulation of seasonal precipitation in Argentina by the South Pacific high. Int J Climatol.; 41 (Suppl. 1): E3279-E3297. https://doi.org/10.1002/joc.6924
Garreaud R., Aceituno P., 2001. Interannual rainfall variability over the South American Altiplano. J Clim 14:2779-2789. https://doi.org/10.1175/1520-0442(2001)014<2779:IRVOTS>2.0.CO;2
Garreaud, R.D., 2018. A plausible atmospheric trigger for the 2017 coastal El Niño. Int. J. Climatol, 38: e1296-e1302. https://doi.org/10.1002/joc.5426
Garreaud, RD, Boisier, JP, Rondanelli, R, Montecinos, A, Sepúlveda, HH, Veloso-Aguila, D, 2020. The Central Chile Mega Drought (2010-2018): A climate dynamics perspective. Int J Climatol. 40, 421- 439. https://doi.org/10.1002/joc.6219
González, M., Garbarini, E., Rolla, A. and Eslamian, S., 2017. Meteorological drought indices: rainfall prediction in argentina. In: Eslamian, S. (Ed.) Handbook of Drought and Water Scarcity. Principle of Drought and Water Scarcity. Vol. 1. Chapter 29. Abingdon, England: Taylor & Francis Publishing (CRC Group), pp. 540-567. https://doi.org/10.1201/9781315404219
Grimm, A. M., & Tedeschi, R. G., 2009. ENSO and Extreme Rainfall Events in South America, Journal of Climate, 22(7), 1589-1609. https://doi.org/10.1175/2008JCLI2429.1
Hersbach, H, Bell, B, Berrisford, P, et al., 2020. The ERA5 global reanalysis. Q J R Meteorol Soc., 146: 1999-2049. https://doi.org/10.1002/qj.3803
Ho, M., Kiem, A. S., and Verdon-Kidd, D. C., 2012. The Southern Annular Mode: a comparison of indices. Hydrol. Earth Syst. Sci., 16, 967-982, https://doi.org/10.5194/hess-16-967-2012
Hurtado, S., Zaninelli, P., Agosta, E., 2020. A multi-breakpoint methodology to detect changes in climatic time series. An application to wet season precipitation in subtropical Argentina, Atmospheric Research, Volume 241, 2020, 104955, ISSN 0169-8095, https://doi.org/10.1016/j.atmosres.2020.104955
Hurtado, SI, Agosta, EA., 2021. El Niño Southern Oscillation-related precipitation anomaly variability over eastern subtropical South America: Atypical precipitation seasons. Int J Climatol. 2021; 41: 3793- 3812. https://doi.org/10.1002/joc.6559
Kayano, MT, Andreoli, RV, Souza, Rodrigo Augusto Ferreira de, 2019. El Niño-Southern Oscillation related teleconnections over South America under distinct Atlantic Multidecadal Oscillation and Pacific Interdecadal Oscillation backgrounds: La Niña. Int J Climatol. 39: 1359-1372. https://doi.org/10.1002/joc.5886
Knight, J. R., Folland, C. K., and Scaife, A., 2006. Climate impacts of the Atlantic Multidecadal Oscillation. Geophys. Res. Lett., 33, L17706. https://doi.org/10.1029/2006GL026242
Krepper, C.M. and García, N.O., 2004. Spatial and temporal structure of trends and interannual variability of precipitation over La Plata Basin. Quaternary International, 114, 11-21. https://doi.org/10.1016/S1040-6182(03)00038-7
Kucharski, F., A. Bracco, J. H. Yoo, and F. Molteni, 2007. Low-frequency variability of the Indian monsoon-ENSO relationship and the tropical Atlantic: The “weakening” of the 1980s and 1990s. J. Clim., 20, 4255- 4266. https://doi.org/10.1175/JCLI4254.1
Li, XF., Blenkinsop, S., Barbero, R. et al., 2020. Global distribution of the intensity and frequency of hourly precipitation and their responses to ENSO. Clim Dyn 54, 4823-4839. https://doi.org/10.1007/s00382-020-05258-7
Mantua, N.J., S.R. Hare, Y. Zhang, J.M. Wallace, and R.C. Francis,1997. A Pacific interdecadal climate oscillation with impacts on salmon production. Bulletin of the American Meteorological Society, 78, pp. 1069-1079. https://doi.org/10.1175/1520-0477(1997)078<1069:APICOW>2.0.CO;2
Mantua N. and Hare S., 2002. The Pacific decadal oscillation. Journal of Oceanography, 58, 35-44. https://doi.org/10.1023/A:1015820616384
Marshall, G. J., 2003. Trends in the Southern Annular Mode from observations and 765 reanalyses. J. Clim., 16, 4134-4143, https://doi.org/10.1175/1520-0442%282003%29016<4134%3ATITSAM>2.0.CO%3B2
Marwan, N., Trauth, M.H., Vuille, M. et al., 2003. Comparing modern and Pleistocene ENSO-like influences in NW Argentina using nonlinear time series analysis methods. Climate Dynamics 21, 317-326. https://doi.org/10.1007/s00382-003-0335-3
Medina, F., Bazzano, F., Heredia, T., Elias, A., 2021. Posibles forzantes de variaciones de largo plazo de la precipitación de verano en Tucumán, Argentina. Meteorológica; 46; 1;26- 47. https://doi.org/10.24215/1850468Xe003
Medina, F., Zossi, B., Bossolasco, A., Elias, A., 2023. Performance of CHIRPS dataset for monthly and annual rainfall-indices in Northern Argentina. Atmospheric Research, Volume 283, 2023, 106545, ISSN 0169-8095. https://doi.org/10.1016/j.atmosres.2022.106545
Minetti, J. L., and Vargas, W. M., 1997. Trends and jumps in the annual precipitation in South America, south of the 15 S. Atmósfera, 11(4), 205-221.
Newman, M., Alexander, M. A., Ault, T. R., Cobb, K. M., et al., 2016. The Pacific Decadal Oscillation, Revisited. Journal of Climate, 29(12), 4399-4427. https://doi.org/10.1175/JCLI-D-15-0508.1
O'Neill, B., van Aalst, M., Zaiton Ibrahim, Z., Berrang Ford, L., Bhadwal, S., Buhaug, H. et al., 2022. Key Risks Across Sectors and Regions. In: Climate Change 2022: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [H.-O. Pörtner, D.C. Roberts, M. Tignor, at al. (eds.)]. Cambridge University Press, Cambridge, UK and New York, NY, USA, 786 pp. 2411-2538, https://doi.org/10.1017/9781009325844.025
Penalba O. and Robledo F., 2010. Spatial and temporal variability of the frequency of extreme daily rainfall regime in the La Plata Basin during the 20th century. Clim. Change 98: 531-550. https://doi.org/10.1007/s10584-009-9744-6
Rayner N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, A., 2003. Kaplan, Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century, J. Geophys. Res., 108 (D14), 4407, https://doi.org/10.1029/2002JD002670
Reboita, M.S., Ambrizzi, T., Crespo, N.M., Dutra, L.M.M., Ferreira, G.W.d.S., et al., 2021. Impacts of teleconnection patterns on South America climate. Ann. N.Y. Acad. Sci., 1504: 116-153. https://doi.org/10.1111/nyas.14592
Rivera, J. A., Penalba, O. C., 2015. El Niño/La Niña events as a tool for regional drought monitoring in Southern South America. Drought: research and science-Policy interfacing, 293-299. https://doi.org/10.1201/b18077-50
Robledo, F, Vera, C, Penalba, O, 2020. Multi-scale features of the co-variability between global sea surface temperature anomalies and daily extreme rainfall in Argentina. Int J Climatol.; 40: 4289- 4299. https://doi.org/10.1002/joc.6462
Saurral, R.I., Camilloni, I.A. and Barros, V.R., 2017. Low-frequency variability and trends in centennial precipitation stations in southern South America. Int. J. Climatol., 37: 1774-1793. 805 https://doi.org/10.1002/joc.4810
Scardilli, A.S., Llano, M.P. & Vargas, W.M., 2017. Temporal analysis of precipitation and rain spells in Argentinian centenary reference stations. Theor Appl Climatol 127, 339-360. https://doi.org/10.1007/s00704-015-1631-7
Takahashi, K., Martínez, A.G, 2019. The very strong coastal El Niño in 1925 in the far eastern Pacific. Clim Dyn 52, 7389–7415. https://doi.org/10.1007/s00382-017-3702-1
Thompson, D. and Wallace, J., 2000. Annular Modes in the Extratropical Circulation. Part I: Month-to-Month Variability, Journal of Climate, 13(5), 1000-1016. https://doi.org/10.1175/1520-0442(2000)013<1000:AMITEC>2.0.CO;2
Torralba, V., Rodríguez-Fonseca, B., Mohino, E., & Losada, T., 2015. The non-stationary influence of the Atlantic and Pacific Niños on North Eastern South American rainfall. Frontiers in Earth Science, 3, 55. https://doi.org/10.3389/feart.2015.00055
Trauth, M., Bookhagen, B., Marwan, N., Strecker, M., 2003. Multiple landslide clusters record Quaternary climate changes in the northwestern Argentine Andes. Palaeogeography, Palaeoclimatology, Palaeoecology, Volume 194, Issues 1-3, 109-121, ISSN 0031-0182, https://doi.org/10.1016/S0031-0182(03)00273-6
Vasconcellos, F.C. and Cavalcanti, I.F., 2010. Extreme precipitation over Southeastern Brazil in the austral summer and relations with the Southern Hemisphere annular mode. Atmosph. Sci. Lett., 11: 21-26. https://doi.org/10.1002/asl.247
Wachter, P., Beck, C., Philipp, A., Höppner, K., & Jacobeit, J., 2020. Spatiotemporal variability of the Southern Annular Mode and its influence on Antarctic surface temperatures. Journal of Geophysical Research: Atmospheres, 125, e2020JD033818. https://doi.org/10.1029/2020JD033818
Wang, C., Deser, C., Yu, J.Y., DiNezio, P. and Clement, A., 2017. El Niño and southern oscillation (ENSO): a review. Coral Reefs of the Eastern Tropical Pacific. Dordrecht: Springer, 85-106. https://doi.org/10.1007/978-94-017-7499-4_4
Wittenberg, A. T., 2009. Are historical records sufficient to constrain ENSO simulations? Geophys. Res. Lett., 36, L12702. https://doi.org/10.1029/2009GL038710
Zhang, Y., J.M. Wallace, D.S. Battisti, 1997: ENSO-like interdecadal variability: 1900-93. J. Climate, 10, 1004-1020. https://doi.org/10.1175/1520-0442(1997)010<1004:ELIV>2.0.CO;2
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Franco Dario Medina, Bruno S. Zossi, Ana G. Elias

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
According to these terms, the material may be shared (copied and redistributed in any medium or format) and adapted (remixed, transformed and created from the material another work), provided that a) the authorship and the original source of publication (journal and URL of the work) are cited, b) it is not used for commercial purposes and c) the same terms of the license are maintained.