Tendencia del área nevada en las subcuencas de los ríos Grande y Barrancas, Argentina
DOI:
https://doi.org/10.24215/1850468Xe038Palabras clave:
Andes centrales, hidrología de montaña, teledetección, tendencia estacionalResumen
El estudio de la variabilidad en la acumulación nívea en ambientes de montaña permite tener una aproximación a la dinámica hídrica en cuencas que dependen casi exclusivamente del agua de deshielo. En el presente trabajo se hace un análisis de las tendencias estacionales y de las variaciones temporales de la cobertura nival en la alta cuenca del río Colorado (Argentina), en un contexto de vulnerabilidad de las cuencas andinas a los efectos del cambio climático. Se utilizó una serie multitemporal de los productos satelitales MOD10A1 y MOD10A2 que cubren el periodo 2000-2022, así como mediciones de caudal de la estación Buta Ranquil (Nqn). Los resultados muestran que la tendencia en la cobertura de nieve total en el período de estudio fue negativa. En los últimos años se evidencia una postergación en la ocurrencia de la precipitación nívea, una mayor variabilidad, un adelantamiento en el máximo del ciclo anual y una tendencia negativa en el área cubierta de nieve máxima, particularmente en las zonas por encima de 2.500 m.s.n.m. El análisis de tendencia estacional indicó tendencias negativas significativas en la amplitud del ciclo anual de cobertura de nieve y tendencia negativa en la fase en el 66,9 % del área analizada, indicando que las nevadas se presentaron promediando el invierno en los últimos años del período analizado.
Referencias
Aumassanne, C., Beget, M. E., Oricchio, P. C., Di Bella, M., Gaspari, F. J., Babinec, F., 2022: Dinámica anual e interanual de la cobertura de nieve en la cuenca alta del Río Colorado (Argentina) y su relación con el caudal. Meteorologica, 47(2). https://doi.org/10.24215/1850468Xe015
Aumassanne, C., Beget, M. E., Oricchio, P., Di Bella, C. M., Gaspari, F., 2019: Cobertura de nieve en las subcuencas de los ríos Grande y Barrancas (Argentina) y su relación con la morfometría. RIA. Revista de Investigaciones Agropecuarias, 45(3), 394–403. https://www.redalyc.org/articulo.oa?id=86461622008
Boisier, J. P., Alvarez-Garreton, C., Cordero, R. R., Damiani, A., Gallardo, L., Garreaud, R. D., Rondanelli, R., 2018: Anthropogenic drying in central-southern Chile evidenced by long-term observations and climate model simulations. Elem Sci Anth, 6, 74. https://doi.org/10.1525/elementa.328
Bunn, A. G., Goetz, S. J., 2006: Trends in Satellite-Observed Circumpolar Photosynthetic Activity from 1982 to 2003: The Influence of Seasonality, Cover Type, and Vegetation Density. Earth Interactions, 10(12), 1–19. https://doi.org/10.1175/EI190.1
Cara, L., Masiokas, M., Viale, M., Villalba, R., 2016: Análisis de la cobertura nival de la cuenca superior del río Mendoza a partir de imágenes MODIS. Meteorologica, 41(1), 21–36. http://www.meteorologica.org.ar/volumen/volumen-41-n-1/
Caro, A., Condom, T., Rabatel, A., 2021: Climatic and Morphometric Explanatory Variables of Glacier Changes in the Andes (8–55°S): New Insights From Machine Learning Approaches. Frontiers in Earth Science, 9. https://doi.org/10.3389/feart.2021.713011
Clark Labs., 2015: Geospatial Software for Monitoring and Modeling the Earth System.Clark Labs, Clark University.
Cogliati; M. G., Finessi, F.G., Caso, M., 2023: Variación espacial de la evapotranspiración en el norte de la Patagonia. Geografía y Sistemas de Información Geográfica (GEOSIG)., 27(Seccion 1), 1–14. http://www.revistageosig.wixsite.com/geosig
Cogliati, M. G., Müller, G. V., Lovino, M. A., 2021: Seasonal trend analysis of minimum air temperature in La Plata river basin. Theoretical and Applied Climatology, 144(1), 25–37. https://doi.org/10.1007/s00704-020-03512-w
Di Rienzo J.A., Casanoves F., Balzarini M.G., Gonzalez L., Tablada M., Robledo, C. W., 2020: InfoStat. Universidad Nacional de Córdoba. https://www.infostat.com.ar/index.php?mod=page&id=46
Eastman, R. J., Sangermano, F., Ghimire, B., Zhu, H., Chen, H., Neeti, N., Cai, Y., Machado, E. A., Crema, S. C. 2009: Seasonal trend analysis of image time series. International Journal of Remote Sensing, 30(10), 2721–2726. https://doi.org/10.1080/01431160902755338
Finessi, F. G., Cogliati, M. G., 2019: Estudio de las áreas de vegetación en el norte de la provincia de Neuquén con teledetección. Encuentro Del International Centers of Earth Sciences. EICES-14. https://www.uncuyo.edu.ar/ices/actas-de-resumenes-e-ices-14
Garreaud, R. D., Alvarez-Garreton, C., Barichivich, J., Boisier, J. P., Christie, D., Galleguillos, M., LeQuesne, C., McPhee, J., Zambrano-Bigiarini, M., 2017: The 2010–2015 megadrought in central Chile: impacts on regional hydroclimate and vegetation. Hydrology and Earth System Sciences, 21(12), 6307–6327. https://doi.org/10.5194/hess-21-6307-2017
Garreaud, R., Álvarez, C., González, P., 2009: Análisis de las precipitaciones en América del Sur: Variabilidad y tendencias. Revista de Climatología y Meteorología, 14(2), 123-145.
Halcrow, J., 2013: Cuenca del río Colorado determinación de áreas de riesgo hídrico. https://www.coirco.gov.ar/download/jornadas/jornadas2013/04-Jaime-Halcrow.pdf
Hall, D. K., Riggs, G. A., Salomonson, V. V., 2006: MODIS/Terra Snow Cover 5-Min L2 Swath 500m, Version 5 [Data Set].https://doi.org/https://doi.org/10.5067/ACYTYZB9BEOS.
Hernández Duarte, A., Francois Sepúlveda, J.P., Contreras, V.I., Figueroa, Saud Valero, F. R., Saavedra Pimentel, F. A., 2021: Cambios en la cobertura de nieve y su relación con el caudal para la caracterización, monitoreo y gestión de las cuencas de montaña en los Andes extratropicales de Chile entre los 29° y 37°S utilizando teledetección. Boletín de Estudios Geográficos, 116, 123–155.
Neeti, N., Eastman, J. R., 2011: A Contextual Mann-Kendall Approach for the Assessment of Trend Significance in Image Time Series. Transactions in GIS, 15, 599–611. https://doi.org/https://doi.org/10.1111/j.1467-9671.2011.01280.x
Neeti, N., Rogan, J., Christman, Z., Eastman, J. R., Millones, M., Schneider, L., Nickl, E., Schmook, B., Turner, B. L., Ghimire, B., 2012: Mapping seasonal trends in vegetation using AVHRR-NDVI time series in the Yucatán Peninsula, Mexico. Remote Sensing Letters, 3(5), 433–442. https://doi.org/10.1080/01431161.2011.616238
Perl, J. E., Andrés, F. O., 2015: Manejo Integral de la cuenca del río Colorado. Oferta y demanda hídrica en períodos de sequía. Jornada de Actualización "Cuenca Del Río Colorado: Situación Actual, Proyectos En Ejecución, Planificación.
Rivera, J. A., Marianetti, G., Scaglione, M., 2022: Análisis de los eventos de precipitación que afectan la distribución de agua potable en el Gran Mendoza, Argentina. Cuadernos Geográficos, 61(2), 204–222. https://doi.org/10.30827/cuadgeo.v61i2.23908
Rivera, J., Otta, S., Lauro, C., Zazulie, N., 2021: A Decade of Hydrological Drought in Central-Western Argentina. Frontiers in Water, 3. https://doi.org/10.3389/frwa.2021.640544
Rivera, J. A., Penalba, O. C., Villalba, R., Araneo, D. C., 2017: Spatio-Temporal Patterns of the 2010–2015 Extreme Hydrological Drought across the Central Andes, Argentina. In Water (Vol. 9, Issue 9). https://doi.org/10.3390/w9090652
Russell, A. M., Gnanadesikan, A., Zaitchik, B., 2017: Are the Central Andes Mountains a Warming Hot Spot? Journal of Climate, 30(10), 3589–3608. https://doi.org/https://doi.org/10.1175/JCLI-D-16-0268.1
Salcedo, A. P., Aumassanne, C. M., Solorza, R., Teverosvky, S., S., H., P., O., 2022: Uso integrado de datos satelitales para el monitoreo de parámetros hidrometeorológicos en la cuenca alta del río Colorado. In M. Centro Internacional de Ciencias de la Tierra (E-ICES 17). Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo. Malargue (Ed.), 17° Encuentro del Centro Internacional de Ciencias de la Tierra (E-ICES 17).
Salomonson, V. V., Appel, I., 2004: Estimating fractional snow cover from MODIS using the normalized difference snow index. Remote Sensing of Environment, 89(3), 351–360. https://doi.org/https://doi.org/10.1016/j.rse.2003.10.016
Shahgedanova, M., Adler, C., Gebrekirstos, A., Grau, H. R., Huggel, C., Marchant, R., Vuille, M., 2021: Mountain observatories: status and prospects for enhancing and connecting a global community. Mountain Research and Development, 41(2), A1. https://doi.org/10.1659/MRD-JOURNAL-D-20-00054.1
Solorza, R., Aumassanne, C., Salcedo, A. P., Teverovsky, S., Machado, F., 2023: Contributions for an integrated water management system: an hydro-morphological study using multifrequency satellite data in the upper Colorado catchment, Argentina. Revista De La Asociación Geológica Argentina, 81(2). https://revista.geologica.org.ar/raga/article/view/1680
Stöckli, R., Vidale, P. L., 2004: European plant phenology and climate as seen in a 20-year AVHRR land-surface parameter dataset . International Journal of Remote Sensing, 25(17), 3303–3330. https://doi.org/10.1080/01431160310001618149
Viale, M., Bianchi, E., Cara, L., Ruiz, L. E., Villalba, R., Pitte, P., Masiokas, M., Rivera, J., Zalazar, L., 2019: Contrasting Climates at Both Sides of the Andes in Argentina and Chile. Frontiers in Environmental Science, 7. https://doi.org/10.3389/fenvs.2019.00069
Vuille, M., Franquist, E., Garreaud, R., Lavado Casimiro, W. S., Cáceres, B., 2015: Impact of the global warming hiatus on Andean temperature. Journal of Geophysical Research: Atmospheres, 120(9), 3745–3757. https://doi.org/https://doi.org/10.1002/2015JD023126
Descargas
Publicado
Versiones
- 02-10-2025 (2)
- 27-05-2025 (1)
Número
Sección
Licencia
Derechos de autor 2024 Carolina Manuela Aumassanne, Marisa Gloria Cogliati, Ana Paula Salcedo, Romina Solorza, Fernanda Julia Gaspari

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
Acorde a estos términos, el material se puede compartir (copiar y redistribuir en cualquier medio o formato) y adaptar (remezclar, transformar y crear a partir del material otra obra), siempre que a) se cite la autoría y la fuente original de su publicación (revista y URL de la obra), b) no se use para fines comerciales y c) se mantengan los mismos términos de la licencia.




















