Convergence among Argentine districts: A spatial econometrics approach

Authors

  • Isabela Sánchez Vargas Universidad Nacional de Misiones, Argentina
  • Fernando Ignacio Antonio Gonzalez Universidad Nacional de Misiones, Argentina
  • Facundo Eduardo Costa de Arguibel Universidad Nacional de Misiones, Argentina
  • Juan Antonio Dip Universidad Nacional de Misiones, Argentina

DOI:

https://doi.org/10.24215/18521649e041

Keywords:

Argentina, economic growth, spatial econometrics, convergence

Abstract

In this paper, we examine the existence of absolute and conditional beta-convergence in per capita income across departments over a period spanning more than two decades (1992-2013). Unlike most previous studies on the topic, we relax the assumption of independence between observations and allow for the presence of spatial dependence in both static and dynamic models, using per capita luminosity data as a proxy for average income. The results provide robust evidence of a conditional convergence process over the period studied. Specifically, even when accounting for spatial effects, departments with lower levels of per capita income experience a higher rate of economic growth. These findings underscore the importance of incorporating spatial effects into the analysis. The positive and significant overall spatial effect indicates that the economic trajectory of a department is significantly influenced by the trajectory of its neighbours. Finally, spatial spillover effects slow down the convergence process for the entire period under study, with temporal dynamics varying between subperiods: spatial effects tend to delay convergence from 1992 to 2002, while they accelerate it from 2002 to 2013.

Author Biographies

  • Isabela Sánchez Vargas, Universidad Nacional de Misiones, Argentina

    She holds a Bachelor's degree in Economics from the National University of Misiones (2013) and a Master's degree in Economics from the University of Buenos Aires (2017). She is currently an Internal Fellow at the National Scientific and Technical Research Council (CONICET), based at the Faculty of Economic Sciences of the National University of Misiones (FCE – UNaM). She is currently working on her dissertation for the Ph.D. in Economics at the Pontifical Catholic University of Argentina. She teaches Macroeconomics I and Microeconomics II at FCE – UNaM. Her research focuses on economic development and applied microeconometrics.

  • Fernando Ignacio Antonio Gonzalez, Universidad Nacional de Misiones, Argentina

    Fernando Antonio Ignacio González received his Ph.D. in Economics from the National University of the South (UNS) in 2021. His research agenda focuses on the intersections of political economy, economic development, and applied microeconomics. His work has been published in journals such as Economics and Human Biology, Climate and Development, Journal of Gender Studies, Environment, Development and Sustainability, among others.

  • Facundo Eduardo Costa de Arguibel, Universidad Nacional de Misiones, Argentina

    He holds a Bachelor's degree in Economics from the National University of Misiones and a specialization in Public Policy from Torcuato Di Tella University. He is currently pursuing a Master's degree in Econometrics at Torcuato Di Tella University and a Ph.D. in Economics at the National University of the South. He is a Doctoral Fellow at the National Scientific and Technical Research Council (CONICET), based at the Faculty of Economic Sciences of the National University of Misiones. He teaches Macroeconomics II and Industrial Organization at the Faculty of Economic Sciences, National University of Misiones (FCE – UNaM). His research interests include applied microeconomics, econometrics, and economic development.

  • Juan Antonio Dip, Universidad Nacional de Misiones, Argentina

    He holds a Bachelor's degree in Economics from the National University of Tucumán and a Ph.D. in Economics from the Pontifical Catholic University of Argentina (UCA). He has completed research stays at the Center for Studies on Inequality and Development (UFRJ – Brazil), the Complutense University of Madrid (Spain), and a postdoctoral stay at AMZET – ATECH, University of Málaga (Spain). He is a professor of Econometrics at the Faculty of Economic Sciences (FCE) of the National University of Misiones (UNaM), and a postgraduate lecturer. He is a former consultant for the Federal Investment Council (CFI Consultora SA) and former Dean of FCE – UNaM.

References

Abreu, M., de Groot, H. L. F. y Florax, R. J. G. M. (2005). Space and growth: A survey of empirical evidence and methods. Region et Development, 21, 13-44.

Amidi, S., Fagheh Majidi, A. y Javaheri, B. (2020). Growth spillover: A spatial dynamic panel data and spatial cross section data approaches in selected Asian countries. Future Business Journal, 6(1), 20. https://doi.org/10.1186/s43093-020-00026-9

Annoni, P., de Dominicis, L. y Khabirpour, N. (2019). Location matters: A spatial econometric analysis of regional resilience in the European Union. Growth and Change, 50(3), 824-855. https://doi.org/10.1111/grow.12311

Anselin, L., Gallo, J. L. y Jayet, H. (2008). Spatial panel econometrics. En L. Mátyás y P. Sevestre (Eds.), The econometrics of panel data (pp. 625–660). Springer. https://doi.org/10.1007/978-3-540-75892-1_19

Aráoz, M. F. y Nicolini, E. (2015). Persistence vs. reversal and agglomeration economies vs. natural resources. Regional inequality in Argentina in the first half of the twentieth century [Documento de trabajo]. Universidad Carlos III de Madrid, Instituto Figuerola de Historia y Ciencias Sociales. https://hdl.handle.net/10016/20846

Aráoz, M. F., Nicolini, E. A. y Talassino, M. (2020). Growth and convergence among Argentine provinces since 1895. En D. A. Tirado-Fabregat, M. Badia-Miró y H. Willebald (Eds.), Time and space: Latin American Regional Development in Historical Perspective (pp. 65-95). Palgrave Macmillan. https://doi.org/10.1007/978-3-030-47553-6_4

Badinger, H., Müller, W. y Tondl, G. (2004). Regional convergence in the European Union, 1985-1999: A spatial dynamic panel analysis. Regional Studies, 38(3), 241-253. https://doi.org/10.1080/003434042000211105

Barro, R. J. (2012). Convergence and modernization revisited (NBER Working Paper No. 18295). National Bureau of Economic Research. https://doi.org/10.3386/w18295

Barro, R. J. y Sala-i-Martin, X. (1991). Convergence across states and regions. Brookings Papers on Economic Activity, 1, 107-182.

Barro, R. J. y Sala-i-Martin, X. (1992). Convergence. Journal of Political Economy, 100(2), 223-251. https://doi.org/10.1086/261816

Baumont, C., Ertur, C. y Le Gallo, J. (2003). Spatial convergence clubs and the European regional growth process, 1980–1995. En B. Fingleton (Ed.), European regional growth (pp. 131-158). Springer. https://doi.org/10.1007/978-3-662-07136-6_5

Bouayad-Agha, S. y Vedrine, L. (2010). Estimation strategies for a spatial dynamic panel using GMM. A new approach to the convergence issue of European regions. Spatial Economic Analysis, 5(2), 205-227. https://doi.org/10.1080/17421771003730711

Cartone, A., Postiglione, P. y Hewings, G. J. (2021). Does economic convergence hold? A spatial quantile analysis on European regions. Economic Modelling, 95, 408-417. https://doi.org/10.1016/j.econmod.2020.03.008

Chanda, A. y Kabiraj, S. (2020). Shedding light on regional growth and convergence in India. World Development, 133, 104961. https://doi.org/10.1016/j.worlddev.2020.104961

Chen, X. y Nordhaus, W. (2011). Using luminosity data as a proxy for economic statistics. Procedings of the National Academy of Sciences, 108(21), 8589–8594. https://doi.org/10.1073/pnas.1017031108

Ciaschi, M. (2021). Análisis distributivo utilizando información satelital: El caso de Argentina. Estudios Económicos, 38(77), 5-38. https://doi.org/10.52292/j.estudecon.2021.2116

Cravo, T. A. y Resende, G. M. (2013). Economic growth in Brazil: a spatial filtering approach. The annals of regional science, 50, 555-575. https://doi.org/10.1007/s00168-012-0504-6

Dall'erba, S. y Le Gallo, J. (2008). Regional convergence and the impact of European structural funds over 1989–1999: A spatial econometric analysis. Regional Science, 87, 219-244. https://doi.org/10.1111/j.1435-5957.2008.00184.x

Doll, C., Muller, J. y Elvidge, C. (2000). Nighttime imagery as a tool for global mapping of socioeconomic parameters and greenhouse gas emissions. Ambio, 29(3), 157-162. https://doi.org/10.1579/0044-7447-29.3.157

Ebener, S., Murray, C., Tandon, A. y Elvidge, C. (2005). From wealth to health: Modelling the distribution of income per capita at the sub-national level using night-time light imagery. International Journal of Health Geographics, 4, 5. https://doi.org/10.1186/1476-072X-4-5

Elhorst, J. P. (2014). Dynamic spatial panels: Models, methods and inferences. En Spatial Econometrics: From cross-sectional data to spatial panels (pp. 95-119). Springer. https://doi.org/10.1007/978-3-642-40340-8_4

Elhorst, J. P. (2014). Spatial econometrics: From cross-sectional data to spatial panels. Springer. https://doi.org/10.1007/978-3-642-40340-8_4

Elhorst, J. P., Piras, G. y Arbia, G. (2010). Growth and convergence in a multi-regional model with space-time dynamics. Geographical Analysis, 42(3), 338–355. https://doi.org/10.1111/j.1538-4632.2010.00796.x

Elvidge, C., Baugh, K., Kihn, E., Koehl, H., Davis, E. y Davis, C. (1997). Relation between satellite observed visible near-infrared emissions, population, economic activity and electric power consumption. International Journal of Remote Sensing, 18(6), 1373-1379. https://doi.org/10.1080/014311697218485

Elvidge, C., Hobson, V., Baugh, K., Dietz, J., Shimabukuro, Y., Krug, T., Novo, E., y Echavarria, E. (2001). DMSP-OLS estimation of tropical forest area impacted by surface fires in Roraima, Brazil: 1995 versus 1998. International Journal of Remote Sensing, 22(14), 2661-2673. https://doi.org/10.1080/01431160120888

Ertur, C. y Koch, W. (2007). Growth, technological interdependence and spatial externalities: theory and evidence. Journal of Applied Econometrics, 22(6), 1033-1062. https://doi.org/10.1002/jae.963

Falchi, F., Cinzano, P., Duriscoe, D., Kyba, C., Elvidge, C., Baugh, K., Portnov, B. A., Rybnikova, N. A. y Furgoni, R. (2016). The new world atlas of artificial night sky brightness. Science Advances, 2(6), e1600377. https://doi.org/10.1126/sciadv.1600377

Furková, A. (2019). Spatial spillovers and European Union regional innovation activities. Central European Journal of Operations Research, 27, 815-834. https://doi.org/10.1007/s10100-018-0581-4

Ganong, P. N. y Shoag, D. W. (2012). Why has regional convergence in the US stopped? (NBER Working Paper No. 23609). National Bureau of Economic Research. https://doi.org/10.3386/w23609

Gennaioli, N., La Porta, R., Lopez de Silanes, F. y Shleifer, A. (2014). Growth in regions. Journal of Economic Growth, 19, 259-309. https://doi.org/10.1007/s10887-014-9105-9

Gonçalves, E., de Matos, C. M. y de Araújo, I. F. (2019). Path-dependent dynamics and technological spillovers in the Brazilian regions. Applied Spatial Analysis and Policy, 12(3), 605-629.

González, F. A. I. y Santos, M. E. (2020). Pobreza multidimensional urbana en Argentina. ¿Reducción de las disparidades entre el Norte Grande Argentino y Centro-Cuyo-Sur? (2003-2016). Cuadernos de Economía, 39(81), 795-822. https://doi.org/10.15446/cuad.econ.v39n81.76486

González, F. A. I., Santos, M. E. y London, S. (2021). Convergencia y desarrollo en la Argentina urbana (2003–2016). Regions and Cohesion, 11(1), 73-98. https://doi.org/10.3167/reco.2021.110105

Henderson, J. V., Storeygard, A. y Weil, D. N. (2012). Measuring economic growth from outer space. American Economic Review, 102(2), 994-1028.

Herrera Gómez, M. (2017). Fundamentos de econometría espacial aplicada (MPRA paper No. 80871). Munich Personal RePEc Archive. https://mpra.ub.uni-muenchen.de/80871/

Herrera Gómez, M., Mur, J. y Ruiz, M. (2019). A comparison study on criteria to select the most adequate weighting matrix. Entropy, 21(2), 160. https://doi.org/10.3390/e21020160

Incaltarau, C., Pascariu, G. C., Duarte, A. y Nijkamp, P. (2021). Migration, regional growth and convergence: a spatial econometric study on Romania. The Annals of Regional Science, 66(3), 497-532. https://doi.org/10.1007/s00168-020-01019-w

Johnson, P. y Papageorgiou, C. (2020). What remains of cross-country convergence? Journal of Economic Literature, 58(1), 129-175. https://doi.org/10.1257/jel.20181207

Kubis, A. y Schneider, L. (2016). Regional migration, growth and convergence–A spatial dynamic panel model of Germany. Regional Studies, 50(11), 1789-1803. https://doi.org/10.1080/00343404.2015.1059932

Krugman, P. (1991). Increasing returns and economic geography. Journal of Political Economy, 99(3), 483-499. https://doi.org/10.1086/261763

Lee, L. y Yu, J. (2010). Estimation of spatial autoregressive panel data models with fixed effects. Journal of Econometrics, 154(2), 165-185. https://doi.org/10.1016/j.jeconom.2009.08.001

Lee, L. y Yu, J. (2010). Some recent developments in spatial panel data models. Regional Science and Urban Economics, 40(5), 255–271. https://doi.org/10.1016/j.regsciurbeco.2009.09.002

Le Gallo, J., Ertur, C. y Baumont, C. (2003). A spatial econometric analysis of convergence across European regions, 1980–1995. En B. Fingleton (Ed.), European Regional Growth (pp. 99-129). Springer.

LeSage, J. y Pace, R. (2009). Introduction to spatial econometrics. Chapman and Hall/CRC Press. https://doi.org/10.1201/9781420064254

Lessmann, C. y Seidel, A. (2017). Regional inequality, convergence, and its determinants–A view from outer space. European Economic Review, 92, 110-132. https://doi.org/10.1016/j.euroecorev.2016.11.009

Longhi, F. y Osatinsky, A. (2017). Estructura productiva, pobreza y problemas de empleo en las provincias pampeanas y norteñas de Argentina en los primeros años del siglo XXI. Cuadernos de Geografía: Revista Colombiana de Geografía, 26(1), 77-99. https://doi.org/10.15446/rcdg.v26n1.51011

Maloney, W. F. y Valencia Caicedo, F. (2016). The persistence of (subnational) fortune. The Economic Journal, 126(598), 2363-2401. https://doi.org/10.1111/ecoj.12276

Mendez, C. y Santos-Márquez, F. (2021). Regional convergence and spatial dependence across subnational regions of ASEAN: Evidence from satellite nighttime light data. Regional Science Policy & Practice, 13(6), 1750-1777. https://doi.org/10.1111/rsp3.12335

Mendez, C. y Santos-Márquez, F. (2022). Economic and social disparities across subnational regions of South America: A spatial convergence approach. Comparative Economic Studies, 64(4), 582-605. https://doi.org/10.1057/s41294-021-00181-0

Millo, G. (2017). A simple randomization test for spatial dependence in the presence of common factors and serial correlation. Regional Science and Urban Economics, 66, 28-38. https://doi.org/10.1016/j.regsciurbeco.2017.05.004

Pesaran, M. (2004). General diagnostic tests for cross section dependence in panels (Cambridge Working Papers in Economics No. 0435). University of Cambridge. https://doi.org/10.17863/CAM.5113

Pfaffermayr, M. (2012). Spatial convergence of regions revisited: a spatial maximum likelihood panel approach. Journal of Regional Science, 52(5), 857-873. https://doi.org/10.1111/j.1467-9787.2012.00773.x

Pinkovskiy, M. y Sala-i-Martin, X. (2016). Lights, camera… income! Illuminating the national accounts-household surveys debate. The Quarterly Journal of Economics, 131(2), 579-631. https://doi.org/10.1093/qje/qjw003

Piras, G. y Arbia, G. (2007). Convergence in per-capita GDP across EU-NUTS2 regions using panel data models extended to spatial autocorrelation effects. Statistica, 67(2), 157–172. https://doi.org/10.6092/issn.1973-2201/3513

Rabanal, C. (2016). Efectos espaciales y convergencia económica: herramientas metodológicas para su estudio. REICE: Revista Electrónica de Investigación en Ciencias Económicas, 4(7), 378-396. https://doi.org/10.5377/reice.v4i7.2839

Rey, S. J. y Janikas, M. V. (2005). Regional convergence, inequality, and space. Journal of Economic Geography, 5(2), 155-176. https://doi.org/10.1093/jnlecg/lbh044

Rey, S. J. y Montouri, B. D. (1999). US regional income convergence: a spatial econometric perspective. Regional Studies, 33(2), 143-156. https://doi.org/10.1080/00343409950122945

Sanso-Navarro, M., Vera-Cabello, M. y Ximénez-De-Embún, D. P. (2017). Human capital spillovers and regional development. Journal of Applied Econometrics, 32(4), 923-930. http://dx.doi.org/10.2139/ssrn.2560742

Sanso-Navarro, M., Vera-Cabello, M. y Puente-Ajovín, M. (2020). Regional convergence and spatial dependence: A worldwide perspective. The Annals of Regional Science, 65, 147-177. https://doi.org/10.1007/s00168-020-00978-4

Sutton, P. y Costanza, R. (2002). Global estimates of market and non-market values derived from nighttime satellite imagery, land cover, and ecosystem service valuation. Ecological Economics, 41(3), 509-527. https://doi.org/10.1016/S0921-8009(02)00097-6

Talassino, M. (2017). Convergencia Regional Argentina: Análisis exploratorio y econométrico espacial basado en el producto bruto geográfico departamental. Asociación Argentina de Economía Política.

Talassino, M. R. y Herrera Gómez, M. (2021). Impacto de los efectos espaciales en la convergencia regional. Análisis departamental para la Argentina (Documento de Trabajo 2021-42). Red Nacional de Investigadores en Economía.

Wooldridge, J. M. (2010). Econometric Analysis of Cross Section and Panel Data. MIT Press.

Yu, J., de Jong, R. y Lee, L. (2012). Estimation for spatial dynamic panel data with fixed effects: The case of spatial cointegration. Journal of Econometrics, 167(1), 16–37. https://doi.org/10.1016/j.jeconom.2011.05.014

Zhang, W., Xu, W. y Wang, X. (2019). Regional convergence clubs in China: Identification and conditioning factors. The Annals of Regional Science, 62, 327-350. https://doi.org/10.1007/s00168-019-00898-y

Downloads

Published

2025-05-07

Issue

Section

Articles

How to Cite

Sánchez Vargas, I., Gonzalez, F. I. A., Costa de Arguibel, F. E., & Dip, J. A. (2025). Convergence among Argentine districts: A spatial econometrics approach. Económica, 71, 041. https://doi.org/10.24215/18521649e041