Gubernamentalidad algorítmica y nuevas prácticas punitivas
DOI:
https://doi.org/10.24215/25251678e549Palabras clave:
algoritmos, prácticas punitivas, control social, big dataResumen
Dado el nuevo contexto sociotécnico en el que los algoritmos y los datos configuran nuevas formas de control social, este trabajo pretende señalar cómo se configuran las nuevas prácticas punitivas. Para ello, la investigación explora, a través de una revisión bibliográfica, la forma en que los sistemas informáticos en red han servido como un método multifacético de categorización y clasificación social cuyo objetivo es gestionar poblaciones influyendo en las personas, canalizando elecciones y determinando oportunidades. Este método multifacético funciona estimando probabilidades para anticipar futuros sujetos a intervención, dando lugar a un nuevo modo de gestión algorítmica que funciona según un mecanismo de clasificación que condena el presente al futuro anticipado y pone el propio campo de experiencia y posible acción del sujeto en juego . Este nuevo método de gestión refuerza las desigualdades al restringir y condicionar las oportunidades según intereses privados o incluso gubernamentales, favoreciendo a los afortunados y castigando a los ya menos favorecidos al codificar las injusticias pasadas en sistemas integrados de puntuación que se comportan como profecías autocumplidas con amplio impacto de discriminación sistemática. . De esta manera, los algoritmos ayudan a crear el entorno que justifica sus suposiciones, produciendo un daño generalizado al instituir una dinámica punitiva que abarca ampliamente todas las instancias del juicio humano en las que se pueden utilizar las predicciones algorítmicas.
Descargas
Métricas
Citas
ALI, Muhammad; et al (2019). “Discrimination through optimization: How Facebook’s ad delivery can lead to skewed outcomes” em arXiv.org. Disponível em: https://arxiv.org/abs/1904.02095.
AMARAL, Augusto Jobim (2020). Prólogo. Algoritarismos. TirantLoBlanch, São Paulo.
ANGWIG, Julia; et al (2016). “Machine Bias” em ProPublica. Disponível em: https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing;
BENJAMIN, Ruha (2019). Race after technology. Abolicionist Tools for the New Jim Code. Polity Press, Cambridge
BRAYNE, Sarah (2021). Predict and Surveil: Data, Discretion, and the Future of Policing. Oxford University Press, Nova York
BROWNE, Simone (2015). Dark Matters: on the surveillance of blackkness.Duke University Press, Durham e Londres
BRUNO, Fernanda (2016). “Rastrear, classificar e performar” em Ciência e Cultura, São Paulo, v. 68, n. 1, pp. 34-38.
BUOLAMWINI, Joy; GEBRU, Timnit. (2018). “Gender Shades: Intersectional Accuracy Disparities” emComercial Gender Classification emProceedings of Machine Learning Research, v. 81, pp. 77-91
CARRERA, Fernanda. “Racismo e sexismo em bancos de imagens digitais: análise de resultados de busca e atribuição de relevância na dimensão financeira/profissional” em SILVA, Tarcízio (org.) Comunidades, algoritmos e ativismos digitais: olhares afrodiaspóricos. Literarua, São Paulo
CARRERA, Fernanda; CARVALHO, Denise (2019). “Algoritmos racistas: uma análise da hiper-ritualização da solidão da mulher negra em bancos de imagens digitais” em Galáxia Revista do Programa de Pós-Graduação em Comunicação e Semiótica, n. 43, pp. 99-114. Disponível em https://revistas.pucsp.br/index.php/galaxia/article/view/41614
CITRON, Danielle Keats, PASQUALE, Frank (2014). “The Scored Society: due process for automated predictions” em Washington Law Review, v. 89, n. 1, pp. 1-33. Disponível em https://digitalcommons.law.umaryland.edu/fac_pubs/1431/.
ENSIGN, Danielle; et al (2018). “Runaway feedback loops in predictivepolicing” em ProceedingsofMachine Learning Research, v. 81, pp. 1-12. Disponível em http://proceedings.mlr.press/v81/ensign18a.html
EUBANK, Virginia (2018). Automating Inequality. How high-tech tools profile, police, and punish the poor. St. Martins Press, Nova York.
EUBANK, Virginia (2018). Automating Inequality. How high-tech tools profile, police, and punish the poor. St. MartinsPress, Nova York
FACE Recognition (2017). Eletronic Frontier Foundation. Disponível em: https://www.eff.org/pt-br/pages/face-recognition.
FACE RecognitionVendor Test (2020). NIST. Disponível em https://www.nist.gov/programs-projects/face-recognition-vendor-test-frvt.;
GARVIE, Clare, FRANKLE, Jonathan (2016). “Facial Recognition software might have a racial bias problem” em Atlantic. Disponível em https://www.theatlantic.com/technology/archive/2016/04/the-underlying-bias-of-facial-recognition-systems/476991/.
GARVIE, Clare; et al (2016). “The perpetual line-up: unregulated police face recognition in America” em Georgetown Law Center on Privacy and Technology. Disponívelemhttps://www.perpetuallineup.org/conclusion.
HARCOURT, Bernard (2015). Exposed: desire and disobedience in the digital age. Harvard University Press, Cambridge, Londres.
JURNO, Amanda; D’ANDREA, Carlos (2018). “Algoritmos e cosmopolíticas: a política de censura à nudez no Facebook e o regime de poder dos algoritmos” em PISEAGRAMA. Disponível em https://piseagrama.org/algoritmos-e-cosmopoliticas/
LYON, David (2005). “Surveillance as social sorting: computer codes and mobile bodies” em LYON David, Surveillance as social sorting: privacy, risk, and digital discrimination. Routledge, Nova York, Londres.
MAYER-SCHONBERGER, Viktor, CUKIER, Kenneth (2013). Big data: a Revolution that will transform how we live, work, and think. Houghton Mifflin Harcourt Books and Media, Boston, Nova York.
NAKAMURA, Lisa (2007). Digitizingrace: visual culturesofthe Internet. University of Minnesota Press, Minneapolis, Londres
NIST Study Evaluates Effects of Race, Age, Sex on Face Recognition Software (2020). NIST. Disponível em https://www.nist.gov/news-events/news/2019/12/nist-study-evaluates-effects-race-age-sex-face-recognition-software.
NOBLE, SafiyaUmoja (2012). “Missed connections: what search engines say about women” emBitch Media, n. 54, pp. 36-41. Disponívelemhttps://safiyaunoble.com/missed-connections-search-engines-say-women-spring-2012/
NOBLE, SafiyaUmoja (2014). “Teaching Trayvon” emThe Black Scholar, v. 44, n. 1, pp. 12-29. Disponívelemhttp://www.jstor.org/stable/10.5816/blackscholar.44.1.0012;
NOBLE, SafiyaUmoja (2016). “A Future for Intersectional Black Feminist Technology Studies” emScholar and Feminist Online. Disponívelemhttps://sfonline.barnard.edu/traversing-technologies/safiya-umoja-noble-a-future-for-intersectional-black-feminist-technology-studies/
NOBLE, SafiyaUmoja (2018). Algorithms of oppression: how search engines reinforce racism. New York University Press, Nova York.
NOBLE, SafiyaUmoja (2018). Algorithms of oppression: how search engines reinforce racism. New York University Press, Nova York
NOBLE, SofiyaUmoja (2019). “Google Search: Hiper-visibility as a Means of Rendering Black Woman and Girls Invisible” emInVisible Culture: Na Eletronic Journal for Visual Culture, v. 19. Disponívelem: http://ivc.lib.rochester.edu/google-search-hyper-visibility-as-a-means-of-rendering-black-women-and-girls-invisible/
O’NEIL, Cathy (2016). Weapons of math destruction: how big data increases inequality and threatens democracy. Crown Publishers, Nova York.
O’NEIL, Cathy (2016). Weapons of math destruction: how big data increases inequality and threatens democracy. Crown Publishers, Nova York.
OSOBA, Osonde, WELSER, William (2017). An Intelligence in Our Image: the risks of bias and errors in artificial intelligence. Rand Corporation, Santa Monica.
OSOBA, Osonde; WELSER, William (2017). An Intelligence in Our Image: the risks of bias and errors in artificial intelligence. Rand Corporation, Santa Monica
PASQUALE, Frank (2015). The black box society: the secret algorithms that control money and information. Harvard University Press, Cambridge, Londres.
REY, Emmy (2020). “What PredPol is and what Pred Pol is not” em PredPol. Disponível em: https://www.predpol.com/whatispredpol/.
RITCHIE, Marnie (2020). “Fusing race: the phobogenics of racializong surveillance” emSurveillance&Society, v. 18, n. 1, pp. 12-29. Disponível em https://ojs.library.queensu.ca/index.php/surveillance-and-society/article/view/13131
ROUVROY, Antoinette, BERNS Thomas (2015). “Governamentalidade algorítmica e perspectivas de emancipação: o díspar como condição de individuação pela relação?” em Revista Eco Pós: Tecnopolíticas e Vigilância, Vol. 18, Nro. 2, Pp. 36-56. Disponível em https://revistaecopos.eco.ufrj.br/eco_pos/article/view/2662.
SILVA, Tarcízio (2019). “Racismo Algorítmico em Plataformas Digitais: microacressões e discriminação em código” em Simpósio Internacional LAVITS: assimetrias e (in)visibilidades: vigilância gênero e raça, 6. Anais eletrônicos. Disponível em http://lavits.org/anais-do-vi-simposio-internacional-lavits-assimetrias-e-invisibilidades-vigilancia-genero-e-raca/?lang=pt
SILVA, Tarcízio (2019). “Teoria racial crítica e comunicação digital: conexões contra a dupla opacidade” em Congresso Brasileiro de Ciências da Comunicação, 42. Anais eletrônicos
SILVA, Tarcízio (2020). “Visão computacional e racismo algorítmico: branquitude e opacidade no aprendizado de máquina” em Revista da Associação Brasileira de Pesquisadores/as Negros/as (ABPN), v. 12, n. 31, pp. 428-448. Disponívelemhttp://abpnrevista.org.br/revista/index.php/revistaabpn1/article/view/744?fbclid=IwAR1uD0ab3TQcKGAsEuaVemudHgBWe-Ep5aKIdDplG-9tN59Jf8b3BuHt5kQ).
SILVA, Tarcízio (2020). “Visão computacional e racismo algorítmico: branquitude e opacidade no aprendizado de máquina” em Revista da Associação Brasileira de Pesquisadores/as Negros/as (ABPN), v. 12, n. 31, pp. 428-448. Disponívelem
SINGER, Natasha; METZ, Cade (2019). “Many facial-recognition systems are biased, says U.S. study” emThe New York Times. Disponívelemhttps://www.nytimes.com/2019/12/19/technology/facial-recognition-bias.html.
SPEICHER, Till, et al (2018). “Potential for discrimination in online targeted advertising” emProceedings of Machine Learning Research, v. 81, pp. 1–15. Disponível em http://proceedings.mlr.press/v81/speicher18a.html
SWEENEY, Latanya (2013). “Discrimination in Online Ad Delivery” em arXiv.org. Disponívelemhttps://arxiv.org/abs/1301.6822
THE Allegheny Family Screening Tool (2021). Allegheny County. Disponível em https://www.alleghenycounty.us/Human-Services/News-Events/Accomplishments/Allegheny-Family-Screening-Tool.aspx.
UGWUDIKE, Pamela (2020). “Digital prediction technologies in the justice system: the implications of a ‘race-neutral’ agenda” em Theoretical Criminology, v. 14, n. 3, pp. 482-501. Disponível em https://journals.sagepub.com/doi/abs/10.1177/1362480619896006.
WACHTER-BOETTCHER, Sara (2017). Technically Wrong: sexist apps, biased algorithms, and other threats of toxic tech. W.W. Norton & Company, Nova York, Londres.
WACHTER-BOETTCHER, Sara (2017). Technically Wrong: sexist apps, biased algorithms, and other threats of toxic tech. W.W.Norton & Company, Nova York, Londres
ZARSKY, Tal Z (2014). “Undertanding discrimination in the scored society” emWashington Law Review, v. 89, n. 4, pp. 1375-1412. Disponívelemhttps://papers.ssrn.com/sol3/papers.cfm?abstract_id=2550248.
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2022 Augusto Jobim do Amaral, Ana Clara Santos Elesbão, Felipe da Veiga Dias
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
Todo el material publicado en la revista lo hace bajo una licencia Creative Commons de Reconocimiento-No Comercial-Sin Obra Derivada (CC BY-NC-ND) 4.0