Digital terrain model evaluation and computation of the terrain correction and indirect effect in South America

Autores/as

  • Denizar Blitzkow Escola Politécnica da Universidade de São Paulo
  • Ana C. Oliveira Cancoro de Matos Escola Politécnica da Universidade de São Paulo
  • Jorge Pimentel Cintra Escola Politécnica da Universidade de São Paulo

Palabras clave:

Altimetria de Radar, Altura, Modelo Digital del Terreno

Resumen

Los objetivos principales de este documento son comparar modelos digitales del continente; enseñar los modelos generados para Sudamérica y presentar dos aplicaciones. Shuttle Radar Topography Mission (SRTM) produjo la información más importante y más actualizada de las altitudes del mundo.
Este trabajo centra su atención en las comparaciones de los modelos siguientes: SRTM3, DTM2002, GLOBO, GTOPO30, ETOPO2 y ETOPO5, en los puntos comunes de la rejilla. Las comparaciones son limitadas por las latitudes 60o S y 25 o N y longitudes 100 o W y 25 o W. Todos estos datos, después de los análisis, se han utilizado para crear tres modelos para Sudamérica: SAM_1mv1, SAM_1mv2 (1' de espaciamiento de la rejilla) y SAM_30s (30” de espaciamiento de la rejilla). Los tres modelos bien como el STRM fueron evaluados usando puntos de referencia de nivel (BM) en Brasil y Argentina. Este trabajo también muestra dos aplicaciones importantes del SAM_1mv1: corrección del terreno (una de las reducciones aplicadas a la aceleración de la gravedad) y efecto indirecto. (una consecuencia del proceso de reducción de la masa exterior al geoide). Éstos son muy importantes en la región de los Andes para computar el geoide con exactitud.

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Denizar Blitzkow, Escola Politécnica da Universidade de São Paulo



Ana C. Oliveira Cancoro de Matos, Escola Politécnica da Universidade de São Paulo

l

Citas

Blitzkow, D., A.C.O.C. Matos, J.P. Cintra, 2007. SRTM Evaluation in Brazil and Argentina with Emphasis on the Amazon Region. Dynamic Planet - Monitoring and Understanding a Dynamic Planet with Geodetic and Oceanographic Tools. Conference of the International Association of Geodesy 22-26 August 2005, Cairns, Australia.Series: International Association of Geodesy Symposia, Vol. 130.

Rizos, Chris; Tregoning, Paul (Eds.), Springer, cap 40, pp 266-271.

Bullard, E. C. Gravity measurements in East Africa. Philosophical Transactions of the Royal Society, v. 235, p. 445–534, 1936.

Cassini, G.; Dor, P.; Ballarin, S., 1937. Tovole fondamentali per la riduzione dei osservati della gravita. [S.l.]: Publicazione dell’ Istituto di Geodesia.

Gemael, C. , 1999. Geodésia física. [S.l.]: UFPR.

Green, and Fairhead, 1991.The South American Gravity Project. In: Recent Geodetic and Gravimetric Research in Latin America. Edited by W. Torge. Springer-Veralg. Berslin.

Hasting, D.A., and P.K. Dunbar, 1999. Global Land One-kilometer Base Elevation (GLOBE) Digital Elevation Model, Documentation, Volume 1.0. Key to Geophysical Records Documentation (KGRD) 34. National Oceanic and Atmospheric Administration, National Geophysical Data Center, 325 Broadway, Boulder, Colorado 80303, U.S.A.

Hammer, S., 1939. Terrain corrections for gravimeter stations. Geophysics, v. 4, p. 184 -194.

Hayford, J. F.; Bowie, W., 1912. The effect of topography and isostatic compensation upon the intensity of gravity. [S.l.]: U.S. Coast and Geodetic Survey Special Publication, n. 10.

Heiskanen, W. A.; Moritz, H., 1967. Physical geodesy. San Francisco: Freeman and Co..

Hensley, S., R. Munjy, P. Rosen, 2001. Interferometric synthetic aperture radar. In: Maune, D. F.

(Ed.). Digital elevation model techonoligies applications: the DEM users manual. Bethesda, Maryland: ASPRS (The Imaging & Geospatial Information Society), cap. 6, pp. 142–206.

Hutchinson, M.F., 1989. A new procedure for gridding elevation and stream line data with automatic removal of spurious pits. Journal of Hydrology, 106, pp. 211–232.

JPL,2004. SRTM – The Mission to Map the World. Jet Propulsion Laboratory, California Inst. of Techn., Available online at: http://www2.jpl.nasa.gov/srtm/index.html

Johnson, C.P., P.A.M. Berry, and R.D. Hilton, 2001. Report on ACE generation, Leicester, UK. Available online at: http://www.cse.dmu.ac.uk/geomatics/ace/ACE_report.pdf.75

Kirby, J. F.; Featherstone,W. E., 1930. Terrain corrcting australian gravity observations using the national digital elevation model and the fast fourier transform. Australian Journal of Earth Sciences, v.46, p. 555–562, 1999.

Lambert, W. D. The reduction of observed values of gravity to sea level. Bulletin Géodésique, v. 26, p. 107–181.

Lemoine, F.G., N.K. Pavlis, S.C. Kenyon, R.H. Rapp, E.C. Pavlis, and B.F. Chao, 1998a. New highresolution modle developed for Earth' gravitational field, EOS, Transactions, AGU, 79, 9, March 3, No 113, 117-118.

Lemoine, F.G., S.C. Kenyon, J.K. Factor, R.G. Trimmer, N.K. Pavlis, D.S. Chinn, C.M. Cox, S.M.

Klosko, S.B. Luthcke, M.H. Torrence, Y.M. Wang, R.G. Williamson, E.C. Pavlis, R.H. Rapp and T.R.

Olson, 1998b. The development of the joint NASA GSFC and the National Imagery and Mapping Agency (NIMA) geopotential model EGM96, NASA/TP-1998-206861. National Aeronautics and Space Administration, Maryland, USA.

Li, Y.C., Sideris, M., 1994. Improved gravimetric terrain correction. Geophysical Journal International 119, 740–752.

Martinec, Z.; Vanicek, P., 1994. The indirect effect of topography in the stokes-helmert technique for a spherical aproximation of the geoid. Manuscripta Geodaetica, v. 19, p. 213–219.

Matos, A.C.O.C., 2005. Implementação de modelos digitais de terreno para aplicações na área de Geodésia e Geofísica na América do Sul. PhD thesis - Escola Politécnica, Universidade de São Paulo, São Paulo, 355 p. Available online at: http://www.teses.usp.br/teses/disponiveis/3/3138/tde-10102005-104155.

Matos, A.C.O.C., D. Blitzkow, 2005. Geração e Avaliação do Modelo Digital de Terreno SAM na Região Costeira do Oceano Atlântico Sul. In: XXII Congresso Brasileiro de Cartografia, Macaé.

NOAA (1988). Data Announcement 88-MGG-02, Digital relief of the Surface of the Earth. NOAA, National Geophysical Data Center, Boulder, CO.. Available online at: http://www.ngdc.noaa.gov/mgg/global/etopo5.html.

NOAA, 2001. 2-minute Gridded Global Relief Data (ETOPO2). NOAA, National Geophysical Data Center, Boulder,CO.

Available online at: http://www.ngdc.noaa.gov/mgg/fliers/01mgg04.html.

Saleh, J., and N.K. Pavlis, 2002. The development and evaluation of the global digital terrain model DTM2002, 3rd Meeting of the International Gravity and Geoid Commission, Thessaloniki, Greece.

Schwarz, K.P.; Sideris, M. G.; Forsberg, R., 1990. The use of fft techniques in physical geodesy. Geophysical Journal International, v. 100, p. 485–514.

Sideris, M. G., 1985. A fast fourier transform method of computing terrain corrections. Manuscripta Geodaetica, v. 10, p. 66–73.

U.S. Geological Survey, 1997. GTOPO30 Global 30 Arc Second Elevation Data Set. Available online at: http://edcwww.cr.usgs.gov/landdaac/gtopo30/gtopo30.html.

Wichiencharoen, C., 1982. The indirect effects on the computation of geoid undulations. [S.l.]: The Ohio State University, Department of Geodetic Science and Surveying (Report no. 336).

Wessel, P., W. H. F Smith, 1991. Free software helps map and display data. EOS, Transactions, American Geophysical Union, v. 72, n. 41, p. 441, 445–446.

Descargas

Publicado

2009-11-05

Cómo citar

Blitzkow, D., Oliveira Cancoro de Matos, A. C., & Pimentel Cintra , . J. (2009). Digital terrain model evaluation and computation of the terrain correction and indirect effect in South America. Geoacta, 34(2), 59–74. Recuperado a partir de https://revistas.unlp.edu.ar/geoacta/article/view/13390

Número

Sección

Trabajos científicos