Digital terrain model evaluation and computation of the terrain correction and indirect effect in South America

Authors

  • Denizar Blitzkow Escola Politécnica da Universidade de São Paulo
  • Ana C. Oliveira Cancoro de Matos Escola Politécnica da Universidade de São Paulo
  • Jorge Pimentel Cintra Escola Politécnica da Universidade de São Paulo

Keywords:

Radar altimetry, Height, Digital Terrain Model

Abstract

The main objectives of this paper are to compare digital terrain models, to show the generated models for South America and to present two applications. Shuttle Radar Topography Mission (SRTM) produced the most important and updated height information in the world. This paper addresses the attention to comparisons of the following models: SRTM3, DTM2002, GLOBE, GTOPO30, ETOPO2 and ETOPO5, at the common points of the grid. The comparisons are limited by latitudes 60o S and 25 o N and longitudes 100 o W and 25 o W. All these data, after some analysis, have been used to create three models for South America: SAM_1mv1, SAM_1mv2 (both of 1’ grid spacing) and SAM_30s (30” grid spacing). Besides this effort, the three models as well as STRM were evaluated using Bench Marks (BM) in Brazil and Argentina. This paper also shows two important geodesy and geophysics applications using the SAM_1mv1: terrain correction (one of the reductions applied to the gravity acceleration) and indirect effect (a consequence of the reduction of the external mass to the geoid).
These are important at Andes for a precise geoid computation.

Downloads

Download data is not yet available.

Author Biographies

Denizar Blitzkow, Escola Politécnica da Universidade de São Paulo



Ana C. Oliveira Cancoro de Matos, Escola Politécnica da Universidade de São Paulo

l

References

Blitzkow, D., A.C.O.C. Matos, J.P. Cintra, 2007. SRTM Evaluation in Brazil and Argentina with Emphasis on the Amazon Region. Dynamic Planet - Monitoring and Understanding a Dynamic Planet with Geodetic and Oceanographic Tools. Conference of the International Association of Geodesy 22-26 August 2005, Cairns, Australia.Series: International Association of Geodesy Symposia, Vol. 130.

Rizos, Chris; Tregoning, Paul (Eds.), Springer, cap 40, pp 266-271.

Bullard, E. C. Gravity measurements in East Africa. Philosophical Transactions of the Royal Society, v. 235, p. 445–534, 1936.

Cassini, G.; Dor, P.; Ballarin, S., 1937. Tovole fondamentali per la riduzione dei osservati della gravita. [S.l.]: Publicazione dell’ Istituto di Geodesia.

Gemael, C. , 1999. Geodésia física. [S.l.]: UFPR.

Green, and Fairhead, 1991.The South American Gravity Project. In: Recent Geodetic and Gravimetric Research in Latin America. Edited by W. Torge. Springer-Veralg. Berslin.

Hasting, D.A., and P.K. Dunbar, 1999. Global Land One-kilometer Base Elevation (GLOBE) Digital Elevation Model, Documentation, Volume 1.0. Key to Geophysical Records Documentation (KGRD) 34. National Oceanic and Atmospheric Administration, National Geophysical Data Center, 325 Broadway, Boulder, Colorado 80303, U.S.A.

Hammer, S., 1939. Terrain corrections for gravimeter stations. Geophysics, v. 4, p. 184 -194.

Hayford, J. F.; Bowie, W., 1912. The effect of topography and isostatic compensation upon the intensity of gravity. [S.l.]: U.S. Coast and Geodetic Survey Special Publication, n. 10.

Heiskanen, W. A.; Moritz, H., 1967. Physical geodesy. San Francisco: Freeman and Co..

Hensley, S., R. Munjy, P. Rosen, 2001. Interferometric synthetic aperture radar. In: Maune, D. F.

(Ed.). Digital elevation model techonoligies applications: the DEM users manual. Bethesda, Maryland: ASPRS (The Imaging & Geospatial Information Society), cap. 6, pp. 142–206.

Hutchinson, M.F., 1989. A new procedure for gridding elevation and stream line data with automatic removal of spurious pits. Journal of Hydrology, 106, pp. 211–232.

JPL,2004. SRTM – The Mission to Map the World. Jet Propulsion Laboratory, California Inst. of Techn., Available online at: http://www2.jpl.nasa.gov/srtm/index.html

Johnson, C.P., P.A.M. Berry, and R.D. Hilton, 2001. Report on ACE generation, Leicester, UK. Available online at: http://www.cse.dmu.ac.uk/geomatics/ace/ACE_report.pdf.75

Kirby, J. F.; Featherstone,W. E., 1930. Terrain corrcting australian gravity observations using the national digital elevation model and the fast fourier transform. Australian Journal of Earth Sciences, v.46, p. 555–562, 1999.

Lambert, W. D. The reduction of observed values of gravity to sea level. Bulletin Géodésique, v. 26, p. 107–181.

Lemoine, F.G., N.K. Pavlis, S.C. Kenyon, R.H. Rapp, E.C. Pavlis, and B.F. Chao, 1998a. New highresolution modle developed for Earth' gravitational field, EOS, Transactions, AGU, 79, 9, March 3, No 113, 117-118.

Lemoine, F.G., S.C. Kenyon, J.K. Factor, R.G. Trimmer, N.K. Pavlis, D.S. Chinn, C.M. Cox, S.M.

Klosko, S.B. Luthcke, M.H. Torrence, Y.M. Wang, R.G. Williamson, E.C. Pavlis, R.H. Rapp and T.R.

Olson, 1998b. The development of the joint NASA GSFC and the National Imagery and Mapping Agency (NIMA) geopotential model EGM96, NASA/TP-1998-206861. National Aeronautics and Space Administration, Maryland, USA.

Li, Y.C., Sideris, M., 1994. Improved gravimetric terrain correction. Geophysical Journal International 119, 740–752.

Martinec, Z.; Vanicek, P., 1994. The indirect effect of topography in the stokes-helmert technique for a spherical aproximation of the geoid. Manuscripta Geodaetica, v. 19, p. 213–219.

Matos, A.C.O.C., 2005. Implementação de modelos digitais de terreno para aplicações na área de Geodésia e Geofísica na América do Sul. PhD thesis - Escola Politécnica, Universidade de São Paulo, São Paulo, 355 p. Available online at: http://www.teses.usp.br/teses/disponiveis/3/3138/tde-10102005-104155.

Matos, A.C.O.C., D. Blitzkow, 2005. Geração e Avaliação do Modelo Digital de Terreno SAM na Região Costeira do Oceano Atlântico Sul. In: XXII Congresso Brasileiro de Cartografia, Macaé.

NOAA (1988). Data Announcement 88-MGG-02, Digital relief of the Surface of the Earth. NOAA, National Geophysical Data Center, Boulder, CO.. Available online at: http://www.ngdc.noaa.gov/mgg/global/etopo5.html.

NOAA, 2001. 2-minute Gridded Global Relief Data (ETOPO2). NOAA, National Geophysical Data Center, Boulder,CO.

Available online at: http://www.ngdc.noaa.gov/mgg/fliers/01mgg04.html.

Saleh, J., and N.K. Pavlis, 2002. The development and evaluation of the global digital terrain model DTM2002, 3rd Meeting of the International Gravity and Geoid Commission, Thessaloniki, Greece.

Schwarz, K.P.; Sideris, M. G.; Forsberg, R., 1990. The use of fft techniques in physical geodesy. Geophysical Journal International, v. 100, p. 485–514.

Sideris, M. G., 1985. A fast fourier transform method of computing terrain corrections. Manuscripta Geodaetica, v. 10, p. 66–73.

U.S. Geological Survey, 1997. GTOPO30 Global 30 Arc Second Elevation Data Set. Available online at: http://edcwww.cr.usgs.gov/landdaac/gtopo30/gtopo30.html.

Wichiencharoen, C., 1982. The indirect effects on the computation of geoid undulations. [S.l.]: The Ohio State University, Department of Geodetic Science and Surveying (Report no. 336).

Wessel, P., W. H. F Smith, 1991. Free software helps map and display data. EOS, Transactions, American Geophysical Union, v. 72, n. 41, p. 441, 445–446.

Downloads

Published

2009-11-05

How to Cite

Blitzkow, D., Oliveira Cancoro de Matos, A. C., & Pimentel Cintra , . J. (2009). Digital terrain model evaluation and computation of the terrain correction and indirect effect in South America. Geoacta, 34(2), 59–74. Retrieved from https://revistas.unlp.edu.ar/geoacta/article/view/13390

Issue

Section

Scientific work