Analysis of the dynamics of time series from meteorological variables in the climatological station CHONE, Ecuador

Authors

  • María Fernanda Ayala Universidad de las Fuerzas Armadas – ESPE. Ecuador
  • Alfonso Tierra Centro Geoespacial. Universidad de las Fuerzas Armadas – ESPE. Ecuador
  • David Carrera-Villacrés Centro Geoespacial. Universidad de las Fuerzas Armadas – ESPE. Universidad Central del Ecuador. Facultad de Ingeniería Geología Minas Petróleos y Ambiental FIGEMPA.

Keywords:

chaos, phase space, recurrence plots, meteorological variables, surrogate test

Abstract

Climate studies have been a subject of great interest through history, since the XVII century with the creation of the first measurement instruments for meteorological variables, being the main reason the performance of accurate weather forecasts. Mathematical, statistical and computational methods are commonly used for this purpose but most of them are linear in nature. This causes relevant information and nonlinear components to remain hidden. In this study, the dynamic behavior of the meteorological variables rainfall, evaporation, temperature, and wind speed, at the climatological 52 station of Chone (M0162) were analyzed. Weather observations were provided by the Ecuadorian Institute for Meteorology and Hydrology (INAMHI). The Matlab software allowed us to perform three chaos measurement techniques on the four variables studied in order to seek some hints of chaos in the time series. The first technique used was the probability distribution, followed by the reconstruction of the phase space diagrams, and finally the recurrence plot of each variable was constructed. As a result, four histograms, four phase space diagrams and four recurrence plots of the variables were obtained. The results were classified according to their dynamics. Finally, using the recurrence quantification analysis and a surrogate test it was possibly to distinguish a slight degree of
determinism in the time series, concluding that the variables were not stochastic.

Downloads

Download data is not yet available.

References

Asesores y Consultores del Litoral Cia. Ltda. (ACOLIT), (2008). Actualización de los estudios definitivos del proyecto de propósito múltiple Chone. Estudio Hidrológico. Documento técnico de apoyo Nº 9: Anexo 2.

Aştefănoaei, C., Pretegiani, E., Optican, L. M., Creangă, D., y Rufa, A. (2013). Eye movement recording and nonlinear dynamics analysis–the case of saccades. Romanian Journal of Biophysics, 23(1-2), 81.

Carbajal, F. P. (2003). Búsqueda de atractores extraños en dinámica cardiaca durante el ciclo onírico. Pro Mathematica, 17(34), 129-141.

Carrasco, R., Vargas, M., Soto, I., Fuertes, G., y Alfaro, M. (2015). Copper Metal Price Using Chaotic Time Series Forecating. IEEE Latin America Transactions, 13(6), 1961-1965. doi: https://doi.org/10.1109/TLA.2015.7164223

Carrera-Villacrés, D., Guevara-García, P., Maya-Carrillo, M., y Crisanto-Perrazo, T. (2015). Variations of Species Concentration in Inorganic Water Dam “Purpose Multiple Chone”, Ecuador Based on Precipitation, Evaporation and Evapotranspiration. Procedia Earth and Planetary Science, 15, 641-646. doi: https://doi.org/10.1109/TLA.2015.7164223

Carrera, D., Guevara, P., Tamayo, L., Balarezo, A., Narváez, C., y Morocho, D. (2016). Relleno de series anuales de datos meteorológicos mediante métodos estadísticos en la zona costera e interandina del Ecuador, y cálculo de la precipitación media. Idesia (Arica), 34(3), 81-90.

Carrión, A., Miralles, R., y Lara, G. (2014). Measuring predictability in ultrasonic signals: An application to scattering material characterization. Ultrasonics, 54(7), 1904-1911. doi: https://doi.org/10.1016/j.ultras.2014.05.008

Coelho, M. C. S., Mendes, E. M. A. M., y Aguirre, L. A. (2008). Testing for intracycle determinism in pseudoperiodic time series. Chaos: An Interdisciplinary Journal of Nonlinear Science, 18(2), 023125. doi: https://doi.org/10.1063/1.2927388

Coppo, J., (2010). Teoría del caos y método científico. Revista Veterinaria, 21(2).

Department of Control Systems and Mechatronics, Wroclaw University of Technology, Korus, Ł., Piórek, M., y Department of Computer Engineering, Wroclaw University of Technology. (2015). Compound method of time series classification. Nonlinear Analysis: Modelling and Control, 20(4), 545-560. doi: https://doi.org/10.15388/NA.2015.4.6

Dolan, K. T., y Spano, M. L. (2001). Surrogate for nonlinear time series analysis. Physical Review E, 64(4), 046128. doi: https://doi.org/10.1103/PhysRevE.64.046128

Echi, I., Tikyaa, E. V., y Isikwue, B. C. (2015). Dynamics of daily rainfall and temperature in makurdi. International Journal of Science and Research, 4(7), 493-499.

Espinosa, A. (2004). El Caos y la Caracterización de Series de tiempo a través de técnicas de la dinámica no lineal (Tesis que para obtener el título de Ingeniero en Computación). Universidad Autónoma de México, México D.F.

Fabretti, A., y Ausloos, M. (2005). Recurrence plot and recurrence quantification analysis for detecting a critical regime: examples from financial market inidices. International Journal of Modern Physics C, 16(05), 671-706. doi: https://doi.org/10.1142/S0129183105007492

García, S., Romo, M., y Figueroa, J. (2013). Characterization of ground motions using recurrence plots. Geofísica internacional, 52(3), 209-227.

Gutiérrez, L. y J. Mejía, (2012). Detección de la dinámica y la no linealidad en las señales de tiempo financieras a través del método de los datos sustitutos.

Huth, R., y Pokorná, L. (2004). Parametric versus non-parametric estimates of climatic trends. Theoretical and Applied Climatology, 77(1-2), 107-112. doi: https://doi.org/10.1007/s00704-003-0026-3

Inzunza, J., (2000). Meteorología descriptiva y aplicaciones en Chile. Universidad de Concepción, Chile.

Ivancevic, V. y T. Ivancevic. (2007). High-dimensional chaotic and attractor systems: a comprehensive introduction. Dordrecht, The Netherlands: Springer.

Kliková, B. y A. Raidl. (2011). Reconstruction of phase space of dynamical systems using method of time delay. En Proceedings of the 20th Annual Conference of Doctoral Students-WDS 2011 (pp. 83-87). Prague, Czech Republic.

Lan, L. W., Lin, F.-Y., y Kuo, A. Y. (2005). Identification for chaotic phenomena in short-term traffic flows: a parsimony procedure with surrogate data. Eastern Asia Society for Transportation Studies, 6, 1518- 1533. doi: https://doi.org/10.11175/easts.6.1518

Marwan, N., y Kurths, J. (2004). Cross Recurrence Plots and Their Applications. En Mathematical Physics Research at the Cutting Edge (pp. 101-139) Hauppauge, USA: Nova Science Publishers.

Marwan, N., Carmenromano, M., Thiel, M., y Kurths, J. (2007). Recurrence plots for the analysis of complex systems. Physics Reports, 438(5-6), 237-329. doi: https://doi.org/10.1016/j.physrep.2006.11.001

Marwan, N. (2011). How to avoid potential pitfalls in recurrence plot based data analysis. International Journal of Bifurcation and Chaos, 21(04), 1003-1017. doi: https://doi.org/10.1142/S0218127411029008

Mesin, L., Cattaneo, R., Monaco, A., y Pasero, E. (2014). Pupillometric Study of the Dysregulation of the Autonomous Nervous System by SVM Networks. En S. Bassis, A. Esposito, y F. C. Morabito (Eds.), Recent Advances of Neural Network Models and Applications (Vol. 26, pp. 107-115). Springer International Publishing. doi: https://doi.org/10.1007/978-3-319-04129-2_11

Millán, H., Kalauzi, A., Cukic, M., y Biondi, R. (2010). Nonlinear dynamics of meteorological variables: Multifractality and chaotic invariants in daily records from Pastaza, Ecuador. Theoretical and Applied Climatology, 102(1-2), 75-85. doi: https://doi.org/10.1007/s00704-009-0242-6

Mokhov, I. I., Smirnov, D. A., Nakonechny, P. I., Kozlenko, S. S., Seleznev, E. P., y Kurths, J. (2011). Alternating mutual influence of El-Niño/Southern Oscillation and Indian monsoon: Indian Monsoon-ENSO mutual influence. Geophysical Research Letters, 38(L00F04). doi: https://doi.org/10.1029/2010GL045932

Moore, B. J. (2006). Chaos Theory: Unpredictable Order in Chaos. En B. J. Moore, Shaking the Invisible Hand (pp. 43-74). Palgrave Macmillan UK. doi: https://doi.org/10.1057/9780230512139_3

Mouronte López, M. L. (2004). Caracterización y análisis de sistemas dinámicos no lineales mediante el estudio del mapa de frecuencias y espacio de fases. (Tesis Doctoral). Universidad Politécnica de Madrid, Madrid, España.

OMM. (2011). Guía de Prácticas Climatológicas. OMM- No. 100. Ginebra, Suiza: Organización Metereológica Mundial (OMM).

Özer, A. B. y, A. Erhan, (2005). Tools for detecting chaos. Sakarya Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 9(1), 60-66.

Palomares Calderón de la Barca, M. (2015). Breve historia de la Agencia Estatal de Meteorología AEMET: el servicio meteorológico español.

Pecar, B. (2004). Visual recurrence analysis as an alternative framework for time series characterization (pp. 241-251). En M. Costantino, y C. A. Brebbia (Eds.), Computational Finance and its Applications. Southhamptpon, UK: WIT Press.

Pizarro, R., Ausensi, P., Aravena, D., Sangüesa, C., León, L., y F. Balocchi. (2009). Evaluación de métodos hidrológicos para la completación de datos faltantes de precipitación en estaciones de la región del Maule, Chile. Aqua-LAC: revista del Programa Hidrológico Internacional para América Latina y el Caribe, 1(2), 172-184.

Rickles, D., Hawe, P., y Shiell, A. (2007). A simple guide to chaos and complexity. Journal of Epidemiology & Community Health, 61(11), 933-937. doi: https://doi.org/10.1136/jech.2006.054254

Rivera, E. T. (2004). Group Chaos Theory (GCT) A research model and analysis of group process. Journal of Social Complexity, 2(1), 33-49.

Rong Yi, Y. y H. Xiao-Jing, (2011). Phase space reconstruction of chaotic dynamical system based on wavelet decomposition. Chinese Physics B, 20(2), 020505.

Secretaría nacional del agua (SENAGUA), (2015). Gobierno Nacional inaugura Proyecto Multipropósito Chone (PPMCH), cuyo objetivo es mitigar los efectos de las inundaciones. Recuperado de http://www.agua.gob.ec/

Steinhaeuser, K., Chawla, N. V., y Ganguly, A. R. (2011). Complex networks as a unified framework for descriptive analysis and predictive modeling in climate science. Statistical Analysis and Data Mining, 4(5), 497-511. doi: https://doi.org/10.1002/sam.10100

Suresh, A. y Selvaraj, R. (2017). A complete chaotic analysis on daily mean surface air temperature and humidity data of Chennai. Journal of Indian Geophysical Union, 21(4), 277-284.

Tsonis, A. y J. Elsner, (1989). Chaos, strange attractors, and weather. Bulletin of the American Meteorological Society, 70(1), 14-23.

Webber, C. L., y Zbilut, J. P. (2005). Recurrence Quantification Analysis of Nonlinear Dynamical Systems. En M. Riley, y G. Van Orden. (Eds.), Tutorials in Contemporary Nonlinear Methods for the Behavioral Sciences (pp. 26-94). USA: National Science Foundation.

Wendi, D., Marwan, N., y Merz, B. (2018). In Search of Determinism-Sensitive Region to Avoid Artefacts in Recurrence Plots. International Journal of Bifurcation and Chaos, 28(01), 1850007. doi: https://doi.org/10.1142/S0218127418500074

Williams, G. (1997). Chaos theory tamed. Washington D.C., USA: Joseph Henry Press.

Zou, Y., Donner, R. V., Donges, J. F., Marwan, N., y Kurths, J. (2010). Identifying complex periodic windows in continuous-time dynamical systems using recurrence-based methods. Chaos: An Interdisciplinary Journal of Nonlinear Science, 20(4), 043130. doi: https://doi.org/10.1063/1.3523304

Published

2018-12-20

How to Cite

Ayala, M. F., Tierra, A. ., & Carrera-Villacrés, D. (2018). Analysis of the dynamics of time series from meteorological variables in the climatological station CHONE, Ecuador. Geoacta, 43(1). Retrieved from https://revistas.unlp.edu.ar/geoacta/article/view/13319

Issue

Section

Scientific work