Analysis of the dynamics of time series from meteorological variables in the climatological station CHONE, Ecuador
Keywords:
chaos, phase space, recurrence plots, meteorological variables, surrogate testAbstract
Climate studies have been a subject of great interest through history, since the XVII century with the creation of the first measurement instruments for meteorological variables, being the main reason the performance of accurate weather forecasts. Mathematical, statistical and computational methods are commonly used for this purpose but most of them are linear in nature. This causes relevant information and nonlinear components to remain hidden. In this study, the dynamic behavior of the meteorological variables rainfall, evaporation, temperature, and wind speed, at the climatological 52 station of Chone (M0162) were analyzed. Weather observations were provided by the Ecuadorian Institute for Meteorology and Hydrology (INAMHI). The Matlab software allowed us to perform three chaos measurement techniques on the four variables studied in order to seek some hints of chaos in the time series. The first technique used was the probability distribution, followed by the reconstruction of the phase space diagrams, and finally the recurrence plot of each variable was constructed. As a result, four histograms, four phase space diagrams and four recurrence plots of the variables were obtained. The results were classified according to their dynamics. Finally, using the recurrence quantification analysis and a surrogate test it was possibly to distinguish a slight degree of
determinism in the time series, concluding that the variables were not stochastic.
Downloads
References
Asesores y Consultores del Litoral Cia. Ltda. (ACOLIT), (2008). Actualización de los estudios definitivos del proyecto de propósito múltiple Chone. Estudio Hidrológico. Documento técnico de apoyo Nº 9: Anexo 2.
Aştefănoaei, C., Pretegiani, E., Optican, L. M., Creangă, D., y Rufa, A. (2013). Eye movement recording and nonlinear dynamics analysis–the case of saccades. Romanian Journal of Biophysics, 23(1-2), 81.
Carbajal, F. P. (2003). Búsqueda de atractores extraños en dinámica cardiaca durante el ciclo onírico. Pro Mathematica, 17(34), 129-141.
Carrasco, R., Vargas, M., Soto, I., Fuertes, G., y Alfaro, M. (2015). Copper Metal Price Using Chaotic Time Series Forecating. IEEE Latin America Transactions, 13(6), 1961-1965. doi: https://doi.org/10.1109/TLA.2015.7164223
Carrera-Villacrés, D., Guevara-García, P., Maya-Carrillo, M., y Crisanto-Perrazo, T. (2015). Variations of Species Concentration in Inorganic Water Dam “Purpose Multiple Chone”, Ecuador Based on Precipitation, Evaporation and Evapotranspiration. Procedia Earth and Planetary Science, 15, 641-646. doi: https://doi.org/10.1109/TLA.2015.7164223
Carrera, D., Guevara, P., Tamayo, L., Balarezo, A., Narváez, C., y Morocho, D. (2016). Relleno de series anuales de datos meteorológicos mediante métodos estadísticos en la zona costera e interandina del Ecuador, y cálculo de la precipitación media. Idesia (Arica), 34(3), 81-90.
Carrión, A., Miralles, R., y Lara, G. (2014). Measuring predictability in ultrasonic signals: An application to scattering material characterization. Ultrasonics, 54(7), 1904-1911. doi: https://doi.org/10.1016/j.ultras.2014.05.008
Coelho, M. C. S., Mendes, E. M. A. M., y Aguirre, L. A. (2008). Testing for intracycle determinism in pseudoperiodic time series. Chaos: An Interdisciplinary Journal of Nonlinear Science, 18(2), 023125. doi: https://doi.org/10.1063/1.2927388
Coppo, J., (2010). Teoría del caos y método científico. Revista Veterinaria, 21(2).
Department of Control Systems and Mechatronics, Wroclaw University of Technology, Korus, Ł., Piórek, M., y Department of Computer Engineering, Wroclaw University of Technology. (2015). Compound method of time series classification. Nonlinear Analysis: Modelling and Control, 20(4), 545-560. doi: https://doi.org/10.15388/NA.2015.4.6
Dolan, K. T., y Spano, M. L. (2001). Surrogate for nonlinear time series analysis. Physical Review E, 64(4), 046128. doi: https://doi.org/10.1103/PhysRevE.64.046128
Echi, I., Tikyaa, E. V., y Isikwue, B. C. (2015). Dynamics of daily rainfall and temperature in makurdi. International Journal of Science and Research, 4(7), 493-499.
Espinosa, A. (2004). El Caos y la Caracterización de Series de tiempo a través de técnicas de la dinámica no lineal (Tesis que para obtener el título de Ingeniero en Computación). Universidad Autónoma de México, México D.F.
Fabretti, A., y Ausloos, M. (2005). Recurrence plot and recurrence quantification analysis for detecting a critical regime: examples from financial market inidices. International Journal of Modern Physics C, 16(05), 671-706. doi: https://doi.org/10.1142/S0129183105007492
García, S., Romo, M., y Figueroa, J. (2013). Characterization of ground motions using recurrence plots. Geofísica internacional, 52(3), 209-227.
Gutiérrez, L. y J. Mejía, (2012). Detección de la dinámica y la no linealidad en las señales de tiempo financieras a través del método de los datos sustitutos.
Huth, R., y Pokorná, L. (2004). Parametric versus non-parametric estimates of climatic trends. Theoretical and Applied Climatology, 77(1-2), 107-112. doi: https://doi.org/10.1007/s00704-003-0026-3
Inzunza, J., (2000). Meteorología descriptiva y aplicaciones en Chile. Universidad de Concepción, Chile.
Ivancevic, V. y T. Ivancevic. (2007). High-dimensional chaotic and attractor systems: a comprehensive introduction. Dordrecht, The Netherlands: Springer.
Kliková, B. y A. Raidl. (2011). Reconstruction of phase space of dynamical systems using method of time delay. En Proceedings of the 20th Annual Conference of Doctoral Students-WDS 2011 (pp. 83-87). Prague, Czech Republic.
Lan, L. W., Lin, F.-Y., y Kuo, A. Y. (2005). Identification for chaotic phenomena in short-term traffic flows: a parsimony procedure with surrogate data. Eastern Asia Society for Transportation Studies, 6, 1518- 1533. doi: https://doi.org/10.11175/easts.6.1518
Marwan, N., y Kurths, J. (2004). Cross Recurrence Plots and Their Applications. En Mathematical Physics Research at the Cutting Edge (pp. 101-139) Hauppauge, USA: Nova Science Publishers.
Marwan, N., Carmenromano, M., Thiel, M., y Kurths, J. (2007). Recurrence plots for the analysis of complex systems. Physics Reports, 438(5-6), 237-329. doi: https://doi.org/10.1016/j.physrep.2006.11.001
Marwan, N. (2011). How to avoid potential pitfalls in recurrence plot based data analysis. International Journal of Bifurcation and Chaos, 21(04), 1003-1017. doi: https://doi.org/10.1142/S0218127411029008
Mesin, L., Cattaneo, R., Monaco, A., y Pasero, E. (2014). Pupillometric Study of the Dysregulation of the Autonomous Nervous System by SVM Networks. En S. Bassis, A. Esposito, y F. C. Morabito (Eds.), Recent Advances of Neural Network Models and Applications (Vol. 26, pp. 107-115). Springer International Publishing. doi: https://doi.org/10.1007/978-3-319-04129-2_11
Millán, H., Kalauzi, A., Cukic, M., y Biondi, R. (2010). Nonlinear dynamics of meteorological variables: Multifractality and chaotic invariants in daily records from Pastaza, Ecuador. Theoretical and Applied Climatology, 102(1-2), 75-85. doi: https://doi.org/10.1007/s00704-009-0242-6
Mokhov, I. I., Smirnov, D. A., Nakonechny, P. I., Kozlenko, S. S., Seleznev, E. P., y Kurths, J. (2011). Alternating mutual influence of El-Niño/Southern Oscillation and Indian monsoon: Indian Monsoon-ENSO mutual influence. Geophysical Research Letters, 38(L00F04). doi: https://doi.org/10.1029/2010GL045932
Moore, B. J. (2006). Chaos Theory: Unpredictable Order in Chaos. En B. J. Moore, Shaking the Invisible Hand (pp. 43-74). Palgrave Macmillan UK. doi: https://doi.org/10.1057/9780230512139_3
Mouronte López, M. L. (2004). Caracterización y análisis de sistemas dinámicos no lineales mediante el estudio del mapa de frecuencias y espacio de fases. (Tesis Doctoral). Universidad Politécnica de Madrid, Madrid, España.
OMM. (2011). Guía de Prácticas Climatológicas. OMM- No. 100. Ginebra, Suiza: Organización Metereológica Mundial (OMM).
Özer, A. B. y, A. Erhan, (2005). Tools for detecting chaos. Sakarya Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 9(1), 60-66.
Palomares Calderón de la Barca, M. (2015). Breve historia de la Agencia Estatal de Meteorología AEMET: el servicio meteorológico español.
Pecar, B. (2004). Visual recurrence analysis as an alternative framework for time series characterization (pp. 241-251). En M. Costantino, y C. A. Brebbia (Eds.), Computational Finance and its Applications. Southhamptpon, UK: WIT Press.
Pizarro, R., Ausensi, P., Aravena, D., Sangüesa, C., León, L., y F. Balocchi. (2009). Evaluación de métodos hidrológicos para la completación de datos faltantes de precipitación en estaciones de la región del Maule, Chile. Aqua-LAC: revista del Programa Hidrológico Internacional para América Latina y el Caribe, 1(2), 172-184.
Rickles, D., Hawe, P., y Shiell, A. (2007). A simple guide to chaos and complexity. Journal of Epidemiology & Community Health, 61(11), 933-937. doi: https://doi.org/10.1136/jech.2006.054254
Rivera, E. T. (2004). Group Chaos Theory (GCT) A research model and analysis of group process. Journal of Social Complexity, 2(1), 33-49.
Rong Yi, Y. y H. Xiao-Jing, (2011). Phase space reconstruction of chaotic dynamical system based on wavelet decomposition. Chinese Physics B, 20(2), 020505.
Secretaría nacional del agua (SENAGUA), (2015). Gobierno Nacional inaugura Proyecto Multipropósito Chone (PPMCH), cuyo objetivo es mitigar los efectos de las inundaciones. Recuperado de http://www.agua.gob.ec/
Steinhaeuser, K., Chawla, N. V., y Ganguly, A. R. (2011). Complex networks as a unified framework for descriptive analysis and predictive modeling in climate science. Statistical Analysis and Data Mining, 4(5), 497-511. doi: https://doi.org/10.1002/sam.10100
Suresh, A. y Selvaraj, R. (2017). A complete chaotic analysis on daily mean surface air temperature and humidity data of Chennai. Journal of Indian Geophysical Union, 21(4), 277-284.
Tsonis, A. y J. Elsner, (1989). Chaos, strange attractors, and weather. Bulletin of the American Meteorological Society, 70(1), 14-23.
Webber, C. L., y Zbilut, J. P. (2005). Recurrence Quantification Analysis of Nonlinear Dynamical Systems. En M. Riley, y G. Van Orden. (Eds.), Tutorials in Contemporary Nonlinear Methods for the Behavioral Sciences (pp. 26-94). USA: National Science Foundation.
Wendi, D., Marwan, N., y Merz, B. (2018). In Search of Determinism-Sensitive Region to Avoid Artefacts in Recurrence Plots. International Journal of Bifurcation and Chaos, 28(01), 1850007. doi: https://doi.org/10.1142/S0218127418500074
Williams, G. (1997). Chaos theory tamed. Washington D.C., USA: Joseph Henry Press.
Zou, Y., Donner, R. V., Donges, J. F., Marwan, N., y Kurths, J. (2010). Identifying complex periodic windows in continuous-time dynamical systems using recurrence-based methods. Chaos: An Interdisciplinary Journal of Nonlinear Science, 20(4), 043130. doi: https://doi.org/10.1063/1.3523304
Downloads
Published
How to Cite
Issue
Section
License
Starting in 2022 (Vol. 43 number 2) articles will be published in the journal under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International license (CC BY-NC-SA 4.0)
According to these terms, the material can be shared (copied and redistributed in any medium or format) and adapted (remixed, transformed and created from the material another work), provided that a) the authorship and the original source of its publication (journal and URL of the work), b) is not used for commercial purposes and c) the same license terms are maintained.
Prior to this date the articles were published in the journal under a Creative Commons Attribution license (CC BY)
In both cases, the acceptance of the originals by the journal implies the non-exclusive assignment of the economic rights of the authors in favor of the editor, who allows reuse, after editing (postprint), under the license that corresponds according to the edition.
Such assignment means, on the one hand, that after its publication (postprint) in the GEOACTA Magazine of the Association of Geophysicists and Geodesists, the authors can publish their work in any language, medium and format (in such cases, it is requested that it be recorded that the material was originally published in this journal); on the other, the authorization of the authors for the work to be harvested by SEDICI, the institutional repository of the National University of La Plata, and to be disseminated in the databases that the editorial team considers appropriate to increase visibility. of the publication and its authors.
Likewise, the journal encourages the authors so that after their publication in the Journal of the Association of Geophysicists and Geodesists, they deposit their productions in other institutional and thematic repositories, under the principle that offering society scientific production and Unrestricted academic scholarship contributes to a greater exchange of global knowledge.