Annual variability of sea surface temperature in the northern argentinean continental shelf

Authors

  • Moira Luz Clara Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Instituto Nacional de Investigación y Desarrollo Pesquero (INIDEP). Instituto Franco-Argentino para el Estudio del Clima y sus Impactos (UMI-IFAECI/CNRS).
  • Claudia G. Simionato Instituto Franco-Argentino para el Estudio del Clima y sus Impactos (UMI-IFAECI/CNRS). Departamento de Ciencias de la Atmósfera y los Océanos (FCEN-UBA). Centro de Investigaciones del Mar y la Atmósfera (CONICET-UBA).
  • Andrés J. Jaureguizar Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CIC). Instituto Argentino de Oceanografía. Universidad Provincial del Sudoeste (UPSO)-subsede Coronel Pringles.

Keywords:

SST seasonal cycle, EOF analysis, water regime areas, Southwestern Atlantic Ocean

Abstract

Twelve years of daily satellite data (0.1° spatial resolution) were used to study the seasonal variability of the sea surface temperature (SST) over the Northern Argentinean Continental Shelf (NACS; between 33°- 45° S and 52°- 66° W). The seasonal cycle, which includes the annual and semi-annual signals, was assessed using harmonic analysis. The annual cycle explained more than 90% of the total variance in the NACS, with SST amplitudes varying from 3.4 to 7.6° C. Largest variances values for this timescale were observed along the Argentinean coast and the inner shelf; particularly in the El Rincón region (exceeding 96%). Empirical Orthogonal Function Analysis (EOF) in S-Mode was applied to daily SST anomalies in the annual timescale, indicating that nearly 94% of its variance was explained by the first two modes, which accounted for 70 and 24% of the variance, respectively. Mode 1 prevailed most of the year with its positive phase occurring in autumn/winter and the negative in spring/summer.
This mode revealed the seasonal radiative warming/cooling, related to the heating/cooling in summer/winter in most of the NACS; the shallow waters of the Río de la Plata and El Rincón were heated and cooled more and faster than deeper waters. The weakest seasonal heating/cooling occurred around Península Valdés, where vertical mixing maximizes due to tidal action. Mode 2 corresponded to early spring and early fall in their positive and negative phases, respectively. This mode was related to a transition during the early intermediate seasons when the cooling/heating of an extended coastal region connecting Península Valdés and the Río de la Plata occur.

Downloads

Download data is not yet available.

Author Biographies

Moira Luz Clara, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Instituto Nacional de Investigación y Desarrollo Pesquero (INIDEP). Instituto Franco-Argentino para el Estudio del Clima y sus Impactos (UMI-IFAECI/CNRS).

Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Moreno 3527 piso 3,
B7600GIA, Mar del Plata, Buenos Aires, Argentina.
Instituto Nacional de Investigación y Desarrollo Pesquero (INIDEP), Paseo Victoria Ocampo
Nº 1, Escollera Norte, B7602HSA, Mar del Plata, Buenos Aires, Argentina.
Instituto Franco-Argentino para el Estudio del Clima y sus Impactos (UMI-IFAECI/CNRS),
Intendente Güiraldes 2160, Ciudad Universitaria, Pabellón II, piso 2, C1428EGA, Ciudad
Autónoma de Buenos Aires, Argentina.

Claudia G. Simionato, Instituto Franco-Argentino para el Estudio del Clima y sus Impactos (UMI-IFAECI/CNRS). Departamento de Ciencias de la Atmósfera y los Océanos (FCEN-UBA). Centro de Investigaciones del Mar y la Atmósfera (CONICET-UBA).

Instituto Franco-Argentino para el Estudio del Clima y sus Impactos (UMI-IFAECI/CNRS), Intendente Güiraldes 2160, Ciudad Universitaria, Pabellón II, piso 2, C1428EGA, Ciudad Autónoma de Buenos Aires, Argentina.
Departamento de Ciencias de la Atmósfera y los Océanos (FCEN-UBA) and Centro de Investigaciones del Mar y la Atmósfera (CONICET-UBA), Intendente Güiraldes 2160, Ciudad Universitaria, Pabellón II, piso 2, C1428EGA, Ciudad Autónoma de Buenos Aires, Argentina.

Andrés J. Jaureguizar, Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CIC). Instituto Argentino de Oceanografía. Universidad Provincial del Sudoeste (UPSO)-subsede Coronel Pringles.

Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CIC), Calle 526 e/10 y 11, CP1900, La Plata, Buenos Aires, Argentina.
Instituto Argentino de Oceanografía, CC 804, Florida 8000 (Camino La Carrindanga km 7,5), Bahía Blanca, Buenos Aires, Argentina
Universidad Provincial del Sudoeste (UPSO)-subsede Coronel Pringles, Sáenz Peña 867, Coronel Pringles CP 7530, Buenos Aires, Argentina

References

Acha, E. M., Mianzan, H. W., Guerrero, R. A., Favero, M., y Bava, J. (2004). Marine fronts at the continental shelves of austral South America. Journal of Marine Systems, 44(1–2), 83–105. doi: https://doi.org/10.1016/j.jmarsys.2003.09.005

Bava, J., Gagliardini, D. A., Dogliotti, A. I. y Lasta, C. A. (April 8-12, 2002). Annual distribution and variability of remotely sensed sea surface temperature fronts in the Southwestern Atlantic Ocean. 29th International Symposium on Remote Sensing of Environment, Com. Nac. de Activ. Espaciales, Buenos Aires, Argentina.

Bianchi, A. A. (2005). Vertical stratification and air-sea CO2 fluxes in the Patagonian shelf. Journal of Geophysical Research, 110(C7), C07003. doi: http://dx.doi.org/10.1029/2004JC002488

Bianchi, A. A., Pino, D. R., Perlender, H. G. I., Osiroff, A. P., Segura, V., Lutz, V., … Piola, A. R. (2009). Annual balance and seasonal variability of sea-air CO 2 fluxes in the Patagonia Sea: Their relationship with fronts and chlorophyll distribution. Journal of Geophysical Research, 114(C3), C03018. doi: https://doi.org/10.1029/2008JC004854

Carreto, J. I., Benavides, H. R., Negri, R. M., y Glorioso, P. D. (1986). Toxic red-tide in the Argentine Sea. Phytoplankton distribution and survival of the toxic dinoflagellate Gonyaulax excavata in a frontal area. Journal of Plankton Research, 8(1), 15–28. doi: https://doi.org/10.1093/plankt/8.1.15

Carreto, JoséI., A. Lutz, V., Carignan, M. O., Cucchi Colleoni, A. D., y De Marco, S. G. (1995). Hydrography and chlorophyll a in a transect from the coast to the shelf-break in the Argentinian Sea. Continental Shelf Research, 15(2–3), 315–336. doi: https://doi.org/10.1016/0278-4343(94)E0001-3

Cortés, F., Jaureguizar, A. J., Menni, R. C., y Guerrero, R. A. (2011). Ontogenetic habitat preferences of the narrownose smooth-hound shark, Mustelus schmitti, in two Southwestern Atlantic coastal areas. Hydrobiologia, 661(1), 445–456. doi: https://doi.org/10.1007/s10750-010-0559-2

De Wysiecki, A. M., Jaureguizar, A. J., y Cortés, F. (2017). The importance of environmental drivers on the narrownose smoothhound shark ( Mustelus schmitti ) yield in a small-scale gillnet fishery along the southern boundary of the Río de la Plata estuarine area. Fisheries Research, 186, 345–355. doi: https://doi.org/10.1016/j.fishres.2016.10.011

Delgado, A. L., Jamet, C., Loisel, H., Vantrepotte, V., Perillo, G. M. E., y Piccolo, M. C. (2014). Evaluation of the MODIS-Aqua Sea-Surface Temperature product in the inner and midshelves of southwest Buenos Aires Province, Argentina. International Journal of Remote Sensing, 35(1), 306–320. doi: https://doi.org/10.1080/01431161.2013.870680

Derisio, C., Alemany, D., Acha, E. M., y Mianzan, H. (2014). Influence of a tidal front on zooplankton abundance, assemblages and life histories in Península Valdés, Argentina. Journal of Marine Systems, 139, 475–482. doi: https://doi.org/10.1016/j.jmarsys.2014.08.019

Deser, C., Alexander, M. A., Xie, S.-P., y Phillips, A. S. (2010). Sea Surface Temperature Variability: Patterns and Mechanisms. Annual Review of Marine Science, 2(1), 115–143. doi: https://doi.org/10.1146/annurev-marine-120408-151453

Elisio, M., Colonello, J. H., Cortés, F., Jaureguizar, A. J., Somoza, G. M., y Macchi, G. J. (2017). Aggregations and reproductive events of the narrownose smooth-hound shark (Mustelus schmitti) in relation to temperature and depth in coastal waters of the south-western Atlantic Ocean (38–42°S). Marine and Freshwater Research, 68(4), 732. doi: https://doi.org/10.1071/MF15253

Framiñan, M. B., Etala, M. P., Acha, E. M., Guerrero, R. A., Lasta, C. A., y Brown, O. B. (1999). Physical Characteristics and Processes of the Río de la Plata Estuary. In G. M. E. Perillo, M. C. Piccolo, y M. Pino-Quivira (Eds.), Estuaries of South America (pp. 161–194). doi: http://dx.doi.org/10.1007/978-3-642-60131-6_8

Garcia, C. A. E., y Garcia, V. M. T. (2008). Variability of chlorophyll-a from ocean color images in the La Plata continental shelf region. Continental Shelf Research, 28(13), 1568–1578. doi: https://doi.org/10.1016/j.csr.2007.08.010

Giese, B. S. y Carton, J. A. (1994). The Seasonal Cycle in Coupled Ocean-Atmosphere Model. Journal of Climate, 7, 1208 1217.

Glorioso, P. D. (1987). Temperature distribution related to shelf-sea fronts on the Patagonian Shelf. Continental Shelf Research, 7(1), 27–34. doi: https://doi.org/10.1016/0278-4343(87)90061-6

Glorioso, P. D., y Flather, R. A. (1997). The Patagonian Shelf tides. Progress in Oceanography, 40(1–4), 263–283. doi: https://doi.org/10.1016/S0079-6611(98)00004-4

Goni, G. J., Bringas, F., y DiNezio, P. N. (2011). Observed low frequency variability of the Brazil Current front. Journal of Geophysical Research, 116(C10), C10037. doi: https://doi.org/10.1029/2011JC007198

Guerrero, R. A. y Piola, A. R. (1997). Masas de agua en la plataforma continental. In E. Boschi. (Ed.), El Mar Argentino y sus Recursos Pesqueros, Tomo I: Antecedentes Históricos de las Exploraciones en el Mar y las Características Ambientales (pp. 107–119). Bahía Blanca, Argentina: Instituto Nacional de Investigación y Desarrollo Pesquero.

Guerrero, R. A. (1998). Oceanografía física del estuario del Río de la Plata y el sistema costero de El Rincón. In C. A. Lasta, (Ed.), Resultados de una campaña de evaluación de recursos demersales costeros de la Provincia de Buenos Aires y del litoral uruguayo. INIDEP Informe Técnico Nº 8, 21 (pp. 29–54). Mar del Plata, Argentina.

Hannachi A. (2004). A Primer for EOF Analysis of Climate Data. Department of Meteorology, University of Reading, Reading, U.K.

Hoffman, J. A. J., Núñez M. N., y Piccolo, M. C. (1997). Características Climáticas del Atlántico Sudoccidental. In E. Boschi, (Ed.), El Mar Argentino y sus Recursos Pesqueros: 1 (pp. 163– 193). Mar del Plata, Argentina: Inst. Nac. De Investigación y Desarrollo Pesquero.

Jaureguizar, A. J., y Raúl, G. (2009). Striped weakfish (Cynoscion guatucupa) population structure in waters adjacent to Rio de la Plata, environmental influence on its inter-annual variability. Estuarine, Coastal and Shelf Science, 85(1), 89–96. doi: https://doi.org/10.1016/j.ecss.2009.04.013

Jaureguizar, A. J., Solari, A., Cortés, F., Milessi, A. C., Militelli, M. I., Camiolo, M. D., … García, M. (2016). Fish diversity in the Río de la Plata and adjacent waters: An overview of environmental influences on its spatial and temporal structure: environment influence on fish diversity of río de la plata. Journal of Fish Biology, 89(1), 569–600. doi: https://doi.org/10.1111/jfb.12975

Jaureguizar, A. J., Cortés, F., Milessi, A. C., Cozzolino, E., y Allega, L. (2015). A transecosystem fishery: Environmental effects on the small-scale gillnet fishery along the Río de la Plata boundary. Estuarine, Coastal and Shelf Science, 166, 92–104. doi: https://doi.org/10.1016/j.ecss.2014.11.003

Jaureguizar, A. J., Waessle, J. A., y Guerrero, R. A. (2007). Spatio-temporal distribution of Atlantic searobins (Prionotus spp.) in relation to estuarine dynamics (Río de la Plata, Southwestern Atlantic Coastal System). Estuarine, Coastal and Shelf Science, 73(1–2), 30–42. doi: https://doi.org/10.1016/j.ecss.2006.12.012

Kara, A. B., Wallcraft, A. J., Hurlburt, H. E., y Loh, W.-Y. (2009). Which surface atmospheric variable drives the seasonal cycle of sea surface temperature over the global ocean? Journal of Geophysical Research, 114(D5), D05101. doi: https://doi.org/10.1029/2008JD010420

Lentini, C. A. D., Campos, E. J. D., y Podestá, G. G. (2000). The annual cycle of satellite derived sea surface temperature on the western South Atlantic shelf. Revista Brasileira de Oceanografia, 48(2), 93–105. doi: https://doi.org/10.1590/S1413-77392000000200001

Lercari, D., Milessi, A. C., Vögler, R., Velasco, G., y Jaureguizar, A. J. (2018). Modelos tróficos en el Atlántico Sud Occidental: evaluando la estructura y funcionamiento de ecosistemas costeros. In P. Muniz, D. Conde, N. Venturini, E. Brugnoli. (Eds.), Ciencias Marino Costeras en el Umbral del Siglo XXI: Desafíos en Latinoamerica y el Caribe. XV COLACMAR. Sección: Estructura y Funcionamiento de Comunidades y Ecosistemas Marino-Costeros. Punta del Este, Uruguay

Lucas, A. J., Guerrero, R. A., Mianzán, H. W., Acha, E. M., y Lasta, C. A. (2005). Coastal oceanographic regimes of the Northern Argentine Continental Shelf (34–43°S). Estuarine, Coastal and Shelf Science, 65(3), 405–420. doi: https://doi.org/10.1016/j.ecss.2005.06.015

Lutz, V. A., Segura, V., Dogliotti, A. I., Gagliardini, D. A., Bianchi, A. A., y Balestrini, C. F. (2010). Primary production in the Argentine Sea during spring estimated by field and satellite models. Journal of Plankton Research, 32(2), 181–195. doi:

https://doi.org/10.1093/plankt/fbp117

Marrari, M., Signorini, S. R., McClain, C. R., Pájaro, M., Martos, P., Viñas, M. D., … Buratti, C. (2013). Reproductive success of the Argentine anchovy, Engraulis anchoita , in relation to environmental variability at a mid-shelf front (Southwestern Atlantic Ocean). Fisheries Oceanography, 22(3), 247–261. doi: https://doi.org/10.1111/fog.12019

Martínez Avellaneda, N. (2005). Ciclo Anual y Variabilidad de baja frecuencia de la Temperatura Superficial del Mar en el Océano Atlántico Sudoccidental (Tesis de Licenciatura en Oceanografía). Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Buenos Aires, Argentina.

Martos, P., y Piccolo, M. C. (1988). Hydrography of the Argentine continental shelf between 38° and 42°S. Continental Shelf Research, 8(9), 1043–1056. doi: https://doi.org/10.1016/0278-4343(88)90038-6

Meccia, V. L., Simionato, C. G., Fiore, M. E., D’Onofrio, E. E., y Dragani, W. C. (2009). Sea surface height variability in the Rio de la Plata estuary from synoptic to inter-annual scales: Results of numerical simulations. Estuarine, Coastal and Shelf Science, 85(2), 327–343. doi: https://doi.org/10.1016/j.ecss.2009.08.024

Menni, R. C., Jaureguizar, A. J., Stehmann, M. F. W., y Lucifora, L. O. (2010). Marine biodiversity at the community level: Zoogeography of sharks, skates, rays and chimaeras in the southwestern Atlantic. Biodiversity and Conservation, 19(3), 775–796. doi: https://doi.org/10.1007/s10531-009-9734-z

Militelli, M. I. (2007). Biología reproductiva comparada de especies de la familia Sciaenidae en aguas del Río de la Plata y Costa Bonaerense (Tesis Doctoral). Universidad Nacional de Mar del Plata, Facultad de Ciencias Exactas y Naturales, Mar del Plata, Argentina.

Moreira, D., Simionato, G. G., y Dragani, W. (2011). Modeling Ocean Tides and Their Energetics in the North Patagonia Gulfs of Argentina. (2011). Journal of Coastal Research, 27(1), 87. doi: 10.2112/JCOASTRES-D-09-00055.1

North, G. R., Bell, T.L., Cahalan, R. F., y Moeng, F. J. (1982). Sampling errors in the estimation of empirical orthogonal functions. Mon. Weather Rev., 110, 699–706.

Palma, E. D. (2004). A comparison of the circulation patterns over the Southwestern Atlantic Shelf driven by different wind stress climatologies. Geophysical Research Letters, 31(24), L24303. doi: https://doi.org/10.1029/2004GL021068

Palma, E. D., Matano, R. P., y Piola, A. R. (2004b). A numerical study of the Southwestern Atlantic Shelf circulation: Barotropic response to tidal and wind forcing: SOUTHWESTERN ATLANTIC SHELF CIRCULATION. Journal of Geophysical Research: Oceans, 109(C8), n/a-n/a. doi: https://doi.org/10.1029/2004JC002315

Palma, E. D., Matano, R. P., y Piola, A. R. (2008). A numerical study of the Southwestern Atlantic Shelf circulation: Stratified ocean response to local and offshore forcing. Journal of Geophysical Research, 113(C11), C11010. doi: https://doi.org/10.1029/2007JC004720

Parker, G., Paterlini M. C. y Violante, R. A. (1997). El fondo marino. In E. Boschi. El Mar Argentino y sus Recursos Pesqueros, Antecedentes Históricos de las Exploraciones en el Mar y las Características Ambientales, vol. 1 (pp. 65–87). Instituto Nacional de Investigación y Desarrollo Pesquero (INIDEP), Mar del Plata, Argentina.

Piola, A. R. y A. L. Rivas. (1997). Corrientes en la plataforma continental. In E. Boschi. (Ed.), El Mar Argentino y sus Recursos Pesquero, Tomo I: Antecedentes históricos de las exploraciones en el mar y las características ambientales (pp. 119–132). Instituto Nacional de Investigación y Desarrollo Pesquero, Mar del Plata, Argentina.

Piola, A. R. y Scasso, L. M. (1988). Circulación en el Golfo San Matías. Geoacta, 15(1), 33–51.

Pisoni, J. P., Rivas, A. L., y Piola, A. R. (2015). On the variability of tidal fronts on a macrotidal continental shelf, Northern Patagonia, Argentina. Deep Sea Research Part II: Topical Studies in Oceanography, 119, 61–68. doi: https://doi.org/10.1016/j.dsr2.2014.01.019

Podestá G. P., Brown O. B., y Evans, R. H. (1991). The annual cycle of satellite-derived sea surface temperature in the Southwestern Atlantic Ocean. American Meteorological Society, Journal of Climate, 4, 157-467. doi: https://doi.org/10.1175/1520-0442(1991)004%3C0457:TACOSD%3E2.0.CO;2

Powell, B. S., Arango, H. G., Moore, A. M., Di Lorenzo, E., Milliff, R. F., y Foley, D. (2008). 4DVAR data assimilation in the Intra-Americas Sea with the Regional Ocean Modeling System (ROMS). Ocean Modelling, 23(3–4), 130–145. doi:

https://doi.org/10.1016/j.ocemod.2008.04.008

Provost, C., Garcia, O., y Garçon, V. (1992). Analysis of satellite sea surface temperature time series in the Brazil-Malvinas Current Confluence region: Dominance of the annual and semiannual periods. Journal of Geophysical Research: Oceans, 97(C11), 17841–17858. doi: https://doi.org/10.1029/92JC01693

Reynolds, R. W., Rayner, N. A., Smith, T. M., Stokes, D. C. y Wang, W. (2002). An improved in situ and satellite SST analysis for climate. Journal of Climate, 15, 1609–1625. doi: https://doi.org/10.1175/1520-0442(2002)015%3C1609:AIISAS%3E2.0.CO;2

Rivas, A. L. (2010). Spatial and temporal variability of satellite-derived sea surface temperature in the southwestern Atlantic Ocean. Continental Shelf Research, 30(7), 752–760. doi: https://doi.org/10.1016/j.csr.2010.01.009

Rivas, A. L., y Beier, E. J. (1990). Temperature and salinity fields in the nortpatagonic gulfs. Oceanologica Acta, 13, 15–20.

Rivas, A. L., y Pisoni, J. P. (2010). Identification, characteristics and seasonal evolution of surface thermal fronts in the Argentinean Continental Shelf. Journal of Marine Systems, 79(1–2), 134–143. doi: https://doi.org/10.1016/j.jmarsys.2009.07.008

Rivas, A. L., Dogliotti, A. I., y Gagliardini, D. A. (2006). Seasonal variability in satellite-measured surface chlorophyll in the Patagonian Shelf. Continental Shelf Research, 26(6), 703–720. doi: https://doi.org/10.1016/j.csr.2006.01.013

Saraceno, M. (2004). Brazil Malvinas Frontal System as seen from 9 years of advanced very high resolution radiometer data. Journal of Geophysical Research, 109(C5), C05027. doi: https://doi.org/10.1029/2003JC002127

Scasso, L., y Piola, A. (1988). Intercambio neto de agua entre el mar y la atmósfera en el Golfo San Matías. Oceanologica Acta, 15(1): 13-31.

Seckel, G. R. y Beaudry, F. H. (1973). The radiation from sun and sky over the North Pacific Ocean. Trans. Amer. Geophys. Union, 54, 1114.

Severov, D. N. (1990). Particularidades de las condiciones oceanológicas del Atlántico Sudoccidental sobre la base de características temporales medias procedentes de una serie de años. Frente Marítimo, 6, 109–119.

Shiklomanov, I. (1998). World Water Resources-A new appraisal and assessment for the 21st. century. París, France: UNESCO.

Simionato, C. G., Clara Tejedor, M. L., Campetella, C., Guerrero, R., y Moreira, D. (2010). Patterns of sea surface temperature variability on seasonal to sub-annual scales at and offshore the Río de la Plata estuary. Continental Shelf Research, 30(19), 1983–1997. doi: https://doi.org/10.1016/j.csr.2010.09.012

Simionato, C. G., Vera, C. S., y Siegismund, F. (2005). Surface Wind Variability on Seasonal and Interannual Scales Over Río de la Plata Area. Journal of Coastal Research, 214, 770–783. doi: https://doi.org/10.2112/008-NIS.1

Simionato, C. G., Nuñez, M. N., y Engel, M. (2001). The salinity front of the Río de la Plata—A numerical case study for winter and summer conditions. Geophysical Research Letters, 28(13), 2641–2644. doi: https://doi.org/10.1029/2000GL012478

Trenberth, K. E., y Stepaniak, D. P. (2004). The flow of energy through the earth’s climate system. Quarterly Journal of the Royal Meteorological Society, 130(603), 2677–2701. doi: https://doi.org/10.1256/qj.04.83

von Storch, H., y Zwiers, F. W. (1999). Statistical Analysis in Climate Research. Cambridge, UK: Cambridge Univ. Press.

Wang, C., Xie, S. P., y Carton, J. A. (Eds.). (2004). Earth’s Climate: The Ocean-Atmosphere Interaction. doi: https://doi.org/10.1029/GM147

Wick, G. A., Jackson, D. L., y Castro, S. L. (2004). Production of an enhanced blended infrared and microwave sea surface temperature product. IEEE International IEEE International IEEE International Geoscience and Remote Sensing Symposium, 2004. IGARSS ’04. Proceedings. 2004, 2, 835–838. doi: http://dx.doi.org/10.1109/ IGARSS.2004.1368534

Yashayaev, I. M., y Zveryaev, I. I. (2001). Climate of the seasonal cycle in the North Pacific and the North Atlantic oceans. International Journal of Climatology, 21(4), 401–417. doi: https://doi.org/10.1002/joc.585

Downloads

Published

2018-12-20

How to Cite

Clara, M. L., Simionato, . C. G. ., & Jaureguizar, A. J. . (2018). Annual variability of sea surface temperature in the northern argentinean continental shelf. Geoacta, 43(1). Retrieved from https://revistas.unlp.edu.ar/geoacta/article/view/13325

Issue

Section

Scientific work