Digital elevation model for the a1 sub-region of the Salado river master plan and for the city of Junin

Authors

  • María Eugenia Gomez Facultad de Ciencias Astronómicas y Geofísicas. Universidad Nacional de La Plata. Consejo Nacional de Investigaciones Científicas y Técnicas.
  • Raul Perdomo Facultad de Ciencias Astronómicas y Geofísicas. Universidad Nacional de La Plata. Consejo Nacional de Investigaciones Científicas y Técnicas.
  • Lautaro Simontacchi Facultad de Ciencias Astronómicas y Geofísicas. Universidad Nacional de La Plata.
  • Santiago Perdomo Facultad de Ciencias Astronómicas y Geofísicas. Universidad Nacional de La Plata. Consejo Nacional de Investigaciones Científicas y Técnicas.
  • María Florencia Tavarone Facultad de Ciencias Astronómicas y Geofísicas. Universidad Nacional de La Plata.
  • Daniel Del Cogliano Facultad de Ciencias Astronómicas y Geofísicas. Universidad Nacional de La Plata. Consejo Nacional de Investigaciones Científicas y Técnicas.
  • Martín Vázquez Facultad de Ciencias Astronómicas y Geofísicas. Universidad Nacional de La Plata.
  • Nicolás Tessone Facultad de Ciencias Astronómicas y Geofísicas. Universidad Nacional de La Plata.

Keywords:

Salado River Basin, Master Plan of Salado Basin, digital elevation model, geoid, tdaGEOBA

Abstract

The present work presents a digital elevation model (DEM) for sub-basin A1 that is included in the Salado River basin and another DEM for the city of Junín. Thus, the work was divided into two regions; a macro (basin level) and a much smaller one (city of Junín). The building of DEMs for each area involved the analysis of global terrain models derived from SRTM mission and ASTER sensor, the study of their vertical error and the validation of the information. This was done through ground control points (GCP), represented by GPS/leveling points for the sub-basin DEM case and with altimetric points for the city of Junín. It was also necessary to use tools such as global geopotential models and the tdaGEOBA height transformation model.
The main results achieved can be summarized as follows: 1-the SRTM3 model was the most suitable to model the topography at sub-basin level A1; 2-the global geoid model EGM08 corrected by 32 a constant value is a very accurate tool to extrapolate tdaGEOBA to the south of Santa Fe province; the latter was suitable to correct the SRTM3 model (once disaffected from the EGM96 geoid model) in the entire study region; 3 - in flat areas the corrected SRTM3 model showed errors with a submetric standard deviation; 4- the city of Junín has a network of altimetric points that allowed to obtain an urban DEM with a decimetric precision, which is consistent with the corrected SRTM3 in countryside places.

Downloads

Download data is not yet available.

Author Biography

María Eugenia Gomez, Facultad de Ciencias Astronómicas y Geofísicas. Universidad Nacional de La Plata. Consejo Nacional de Investigaciones Científicas y Técnicas.



References

Beumier, C., y Idrissa, M. (Enero de 2015). Deriving a DTM from a DSM by uniform regions and context. EARSeL eProceedings 14.

Burgos, V. H. (2009). Evaluación de ASTER GDEM y SRTM-C/X para modelación hidráulica de la rotura de presa El Carrizal, Mendoza. Instituto Nacional del Agua – Centro Regional Andino. Recuperado de https://www.ina.gov.ar/pdf/ifrrhh/03_003_Burgos.pdf

Castillo, E. B., Chichiple, M. E., y Salas López, R. (2015). Comparación de los MDE ASTER y SRTM en el análisis morfométrico de la cuenca del Utcubamba (Perú). INDES, 3(1), 86-98.

Diaz, G. M., Gomez, M., Deccechis, F., Lencinas, J. D., y del Valle H. F. (2010). Evaluación de los modelos digitales de elevación SRTM-C/X y ASTER GDEM y su relación con los errores planimétricos de datos pancromáticos quickbird ortorrectificados. Laboratorio de Percepción Remota y SIG. Centro de Investigación y Extensión Forestal Andino Patagónico (CIEFAP). Recuperado de http://ciefap.diamo.com.ar/media/publications/D%C3%ADaz_et_al._20102.pdf

Farr, T. G., Rosen, P. A., Caro, E., Crippen, R., Duren, R., Hensley, S., Alsdorf, D. (2007). The Shuttle Radar Topography Mission. Reviews of Geophysics, 45(2), RG2004. doi: https://doi.org/10.1029/2005RG000183

Fan, L., Smethurst, J., Atkinson, P., y Powrie, W. (2014). Propagation of vertical and horizontal source data errors into a TIN with linear interpolation. International Journal of Geographical Information Science, 28(7), 1378-1400. doi: https://doi.org/10.1080/13658816.2014.889299

Felicísimo, A. M. (1994). Modelos Digitales de Terreno Introducción y aplicaciones en las ciencias ambientales. Pentalfa Ediciones.

Fotopoulos, G. (2003). An analysis on the optimal combination of geoid, orthometric and ellipsoidal height data. (PhD Thesis). University of Calgary, Department of Geomatics Engineering, Canada.

Galván, L. (2014). Análisis y ajuste de modelos digitales de elevaciones en la región central de La argentina. Integración de modelos geopotenciales e información altimétrica local. (Tesis de Magister). Universidad Nacional de La Plata, Argentina.

Gamett, B. J. (2010). An Accuracy Assessment of Digital Elevation Data and Subsequent Hydrologic Delineations in Low Relief Terrain: An Analysis for Idaho’s Little Lost River Valley. (Tesis de Magister), Idaho State University, USA.

Gaspari F. J., Rodríguez Vagaría A. M., Senisterra G. E., Denegri G., Delgado M. I., y Besteiro S. (2012). Caracterización morfométrica de la cuenca alta del río Sauce Grande, Buenos Aires, Argentina. AUGMDOMUS, 4, 143-158.

Gomez, M. E., Gaspari, F. J., Perdomo, R. A., Simontacchi, L. E., Montealegre Medina, F. A., Rodriguez Vagaria, A. M., Tavarone, M. F., y Senisterra, G. E. (2017). Modelos digitales de elevación: correcciones altimétricas para uso hidrológico en áreas de llanura. Acta Geologica Lilloana, 29(1), 39–51.

IGN. (2014). Modelo Digital de Elevaciones de la República Argentina–MDE-Ar. Recuperado de

http://www.ign.gob.ar/content/nuevo-modelo-digital-de-elevaciones-para-la-rep%C3%BAblicaargentina

IGN. (2008). Marco de referencia Geodésico POSGAR 07. Recuperado de http://www.sirgas.org/fileadmin/docs/Boletines/Bol13/21_Marco_de_Referencia_Geodesico_Posgar_07_Cimbaro.pdf

Heiskanen, W., y Moritz, H., (1967). Physical Geodesy. San Francisco and London: W. H. Freeman and Company.

Hirabayashi, Y., Mahendran, R., Koirala, S., Konoshima, L., Yamazaki, D., Watanabe, S., …Kanae, S. (2013). Global flood risk under climate change. Nature Climate Change, 3(9), 816-821. doi: https://doi.org/10.1038/nclimate1911

Krabill, W. B., Collins, J. G., Link, L. E., Swift, R. N., y Butler, M. L. (1984). Airborne laser topographic mapping results. Photogrammetric Engineering and Remote Sensing, 50(6), 685–694.

Kenyon, S., Factor, J., Pavlis, N., y Holmes, S. (2007). Towards the next earth gravitational model. Recuperado de http://earthinfo.nga.mil/GandG/wgs84/gravitymod/new_egm/EGM08_papers/EGM-2007-final.pdf

Lee, D. T., y Schachter, B. J. (1980). Two algorithms for constructing a Delaunay triangulation. International Journal of Computer & Information Sciences, 9(3), 219-242. doi: https://doi.org/10.1007/BF00977785

Lemoine, F. G., Kenyon, S. C., Factor, J. K., Trimmer, R. G., Pavlis, N. K., Chinn, et al. (1998). The development of the joint NASA/GSFC and the National Imagery and Mapping Agency (NIMA) geopotential model EGM96. NASA Goddard Space Flight Center, Greenbelt USA.

Moore, I. D., Grayson, R. B., y Ladson, A. R. (1991). Digital terrain modelling: A review of hydrological, geomorphological, and biological applications. Hydrological Processes, 5(1), 3-30. doi: https://doi.org/10.1002/hyp.3360050103

MOSP. (1999). Plan Maestro Integral Cuenca del Río Salado (PMRS). Recuperado de http://www.mosp.gba.gov.ar/sitios/hidraulica/informacion/planmaestro.php

O’Loughlin, F. E., Paiva, R. C. D., Durand, M., Alsdorf, D. E., y Bates, P. D. (2016). A multisensor approach towards a global vegetation corrected SRTM DEM product. Remote Sensing of Environment, 182, 49-59. doi: https://doi.org/10.1016/j.rse.2016.04.018

Oñate-Valdivieso, F., y Bosque Sendra, J. (2007). Extracción de modelos digitales de elevación a partir de imágenes ASTER para la determinación de características morfométricas de cuencas hidrográfica. Teledetección: Hacia un mejor entendimiento de la dinámica global y regional (pp. 457- 464). Martin.

Pacino, C., y Tocho C. (2009). Validation of EGM2008 over Argentina. SIRGAS Report. Recuperado de www.isgeoid.polimi.it › Report_A4_Argentina

Pavlis, N. K., Holmes, S. A., Kenyon, S. C., y Factor, J. K. (2012). The development and evaluation of the Earth Gravitational Model 2008 (EGM2008): THE EGM2008 EARTH GRAVITATIONAL MODEL. Journal of Geophysical Research: Solid Earth, 117(B4), n/a-n/a. doi: https://doi.org/10.1029/2011JB008916

Perdomo, R., Del Cogliano, D. H., Mendoza, L. P. O., Gomez, M. E., y Bagu, D. R. (2012). Servicio de Transformación de alturas en Buenos Aires tdaGEOBA. Recuperado de http://geoweb.fcaglp.unlp.edu.ar/tdaGEOBA/

Rexer, M., y Hirt, C. (2014). Comparison of free high resolution digital elevation data sets (ASTER GDEM2, SRTM v2.1/v4.1) and validation against accurate heights from the Australian National Gravity Database. Australian Journal of Earth Sciences, 61(2), 213-226. doi: https://doi.org/10.1080/08120099.2014.884983

Rodriguez, E., Morris, C.S., Belz, J. E., Chapin, E.C., Martin, J. M. y Daffer, W. (2005). An assessment of the SRTM topographic products (Technical Report JPLD-31639). Recuperado de https://www2.jpl.nasa.gov/srtm/SRTM_D31639.pdf

Rodríguez, E., Morris, C. S., y Belz, J. E. (2006). A Global Assessment of the SRTM Performance. Photogrammetric Engineering & Remote Sensing, 72(3), 249-260. doi: https://doi.org/10.14358/PERS.72.3.249

Simontacchi, L. (2011). Referencias altimétricas en La Plata, Berisso y Ensenada. (Tesis de grado). Universidad Nacional de La Plata, Facultad de Ciencias Astronómicas y Geofísicas, Argentina.

Smith, W. H. F., y Wessel, P. (1990). Gridding with continuous curvature splines in tension. GEOPHYSICS, 55(3), 293-305. doi: http://dx.doi.org/10.1190/1.1442837

NASA. (2011). ASTER Global Digital Elevation Model Version 2 - summary of validation results. Earth Resources Observation and Science (EROS) Center. Recuperado de https://ssl.jspacesystems.or.jp/ersdac/GDEM/ver2Validation/Summary_GDEM2_validation_report_final.pdf

Valenti, C. (2012). Análisis de la versión 2011 del modelo de transformación de alturas de la Provincia de Buenos Aires. (Tesis de Licenciatura en Astronomía) Universidad Nacional dew La Plata, Argentina.

Watson, D. F. (1982). Acord: Automatic contouring of raw data. Computers & Geosciences, 8(1), 97-101. doi: https://ui.adsabs.harvard.edu/link_gateway/1982CG......8...97W/doi:10.1016/0098-3004(82)90039-5

Wessel P., y Smith, W.H. F. (2012). The Generic Mapping Tools Technical Reference and Cookbook, Version 4.5.8. Recuperado de https://www.soest.hawaii.edu/gmt/gmt/pdf/GMT_Docs.pdf

Published

2018-12-20

How to Cite

Gomez, M. E., Perdomo, R. ., Simontacchi, . L. ., Perdomo, . S. ., Tavarone, . M. . F. ., Del Cogliano, D. ., Vázquez, M. ., & Tessone, . N. . (2018). Digital elevation model for the a1 sub-region of the Salado river master plan and for the city of Junin. Geoacta, 43(1). Retrieved from https://revistas.unlp.edu.ar/geoacta/article/view/13327

Issue

Section

Scientific work