Determinación del contenido de vapor de agua precipitable (PWV) a partir de mediciones GPS: primeros resultados en Argentina

Authors

  • Laura I. Fernández Facultad de Ciencias. Astronómicas y Geofísicas. Univ. Nac. de La Plata. (FCAGLP-UNLP).Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET).
  • A.M Meza Facultad de Ciencias. Astronómicas y Geofísicas. Univ. Nac. de La Plata. (FCAGLP-UNLP).Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET).
  • M. Paula Natali Facultad de Ciencias. Astronómicas y Geofísicas. Univ. Nac. de La Plata. (FCAGLP-UNLP).Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET).

Keywords:

Tropospheric zenith delay, Precipitable Water Vapor (PWV), GPS, Red Argentina de Estaciones Permanentes GPS (RAdEP)

Abstract

The proposal of this work consists of the usage of GPS (Global Positioning System) to determine the precipitable water vapor content over our country, taking advantage of the benefits of the GPS: lower costs, possibility of measurements at any point of the planet and under any climatic condition; providing precisions and accuracies comparable to those of the classic technologies. The estimation of PWV (Precipitable Water Vapor) integrated at the zenithal direction of the station from GPS measurements constitutes the first one and more elementary of the determinations realized by the GPS Meteorology. With this name one refers to the set of interdisciplinary works carried out by scientists of the atmospheric sciences along with geodesists ad geophysicists, principally. This new discipline was born at the beginning of the decade of the 90 (Bevis et al., 1992). It has advanced up to making the tomography of the water vapor possible in a given region (Bi et al., 2006). Nevertheless, its best known application consists of the assimilation of the water vapor data, obtained in almost real time, in numerical weather models. The application of this methodology is new in Argentina. In this work we present the generation of PWV values as a sub product of the precise geodetic processing. The last must be done by using the GPS observations from the stations belonging to the RAdEP (Argentinean
network of permanent GPS stations) but they must have a meteorological station co-located. After 36 explaining how to obtain the information, the advantages and differences of this methodology are explained with regard to the classic determinations from radiometers or radiosondes. The application is exemplified presenting PWV's results calculated for the GPS permanent stations LPGS (La Plata, Buenos Aires) and RIOG (Río Grande, Tierra del Fuego). Finally, the state of the art of the GPS Meteorology is discussed in the international context and some previous applications in Argentina are also described. Concluding, we discuss the potentials and possibilities of establishing interdisciplinary works in this field in Argentina in a nearby future.

Downloads

Download data is not yet available.

References

Bevis, M., S. Businger, T. A. Herring, C. Rocken, R. A. Anthes, R. H. Ware 1992 GPS meteorology: Remote sensing of atmospheric water vapor using the Global Positioning System, J. Geophys. Res.,97, 15787-15801.

Bevis, M., S. Businger, T. A. Chiswell S., T. A. Herring, R. A. Anthes, C. Rocken, R. H. Ware. 1994. GPS meteorology: Mapping Zenith wet delays onto precipitable water. Journal of Applied Meteorology V 33, 379-386.

Bi Y., Mao J., Li Ch. 2006. Preliminary results of 4-D water vapor tomography in the troposphere

using GPS. Adv. In Atmos. Sci. V. 23 Nº4, 551-560.55

Braun, J. J., 2006: Identifying Mesoscale Variations in Boundary Layer Moisture Using Ground Based GPS Networks. Fourth Joint Korea-U.S. Workshop on Mesoscale Observations, Data Assimilation, and Modeling for Severe Weather, Seoul, Korea.

Businger S., Chiswell S.R., Bevis M., Duan J., Anthes R.A., Rocken C., Ware R. H., Exner M., VanHove T., Solheim F.S. 1996. The promise of GPS in Atmospheric monitoring. Bull. of the Am. Meteorological Soc. Vol 77. Nº1, 5–18.

Coster, A, A. Niell, F., Solheim, V., Mendes, P., Toor, K., Buchmann, C., Upham, 1996 Measurements of Precipitable Water Vapor by GPS, Radiosondes, and a Microwave Water Vapor Radiometer, ION GPS-96, 625-640.

Crook, N. A., 1996: Sensitivity of moist convection forced by boundary layer processes to low-level thermodynamic fields. Monthly Weather Review, 124, 1767-1785.

Cucurull, L., F. Vandenberge, D. Barker, E. Vilaclara, and A. Rius, 2004: Threedimensional variational data assimilation of ground-based GPS ZTD and meteorological observations during the 14 December 2001 storm event over the western Mediterranean sea. Monthly Weather Review, 132, 749-763.

Dach R., Hugentobler U., Friedez P., Meindl M. (eds), 2007. Bernese GPS Software Version 5.0, Astronomical Institute,University of Berne.

Dai A., Wang J., Ware R., Van Hove T. 2002. Diurnal variation in water vapor over North America and its implications for sampling errors in radiosonde humidity. Journal of Geophys. Res. V 107, D10, 10.1029/2001JD000642, 2002.

Duan J., Bevis M., Fang P., Chiswell S., Businger S., Rocken C., Solheim F., van Hove T., Ware R.,

McClusky S., Herring Th., King R. 1996 GPS Meteorology: Direct Estimation of the Absolute Value of Precipitable Water, Journal of Applied Meteorology Vol 35, N 6. 830-838.

Elgered G., Johansson J., Rönnäng B., Davis J. 1997 Measuring regional atmospheric water vapor using the Swedish permanent GPS network. Geoph. Res. Lett. V24, Nº 21, 2663-2666

Elgered G.,. Davis J.L., Herring T.A., Shapiro I.I.. 1991. Geodesy by radio Interferometry: water vapor radiometry for estimations of the wet delay. J. of Geophys. Res. V 96, Nro B4, 6541-6555.

Fritsch, J. M. and R. E. Carbone, 2004. Improving quantitative precipitation forecasts in the warm season. Bulletin of the American Meteorological Society, 85, 955-965

Gendt G., Reigber C., Dick G. 2001. Near real-time water vapor estimation in a German GPS network-first results from the ground program of the HGF GASP project. Physics and Chemistry of the Earth, Part A: Solid Earth and Geodesy Volume 26. Issues 6-8, 413-416

Guerova G., Bettems J.M., Brockmann E., Matzler Ch., 2004. Assimilation of the GPS-derived integrated water vapour (IWV) in a MeteoSwiss numerical weather model – a first experiment. Physics and Chemistry of the Earth,, 29, 177-186.

Gradinarsky L.P., Haas R., Johansson J.M., Elgered G. 1999. Comparison of atmospheric parameters estimated from VLBI, GPS and microwave radiometer data. Proc.of the 13th Working Meeting on European VLBI for Geodesy and Astrometry. 161-165.

Guo Y.-R., Y. -H. Kuo, J. Dudhia, D. Parsons, C. Rocken, 2000. Four Dimensional Variational Data Assimilation of Heterogenous Mesoscale Observations for a Strong Convective Case, Monthly Weather Review, 619-643.

Gutman, S., and S. Benjamin, 2001 The Role of Ground-Based GPS Meteorological Observations in Numerical Weather Modeling, GPS Solutions, 4, 16-24.

Ha, S.-Y., Y.-H. Kuo, Y.-R. Guo and C. Rocken, 2002: Comparison of GPS Slant Wet Delay Measurements with Model Simulations during the Passage of a Squall Line, Geophys. Res. Lett. 29, 2113, doi: https://doi.org/10.1029/2002GL015891

Ha, S.-Y., Y.-H. Kuo, Y.-R. Guo and G.-H. Lim, 2003: Variational assimilation of slant-path wet delay measurements from a hypothetical ground-based GPS network, Mon. Wea. Rev. 131, 2635-2655.

Hofmann-Wellenhof B., Lichtenegger H., Collins J. 1992 Global Positioning System: Theory and Practice. Springer-Verlag. Wien.

Hopfield H. 1969 Two-quartic tropospheric refractivity profile for correcting satellite data. Journ. Geophys. Res. 74, N 18, 4487-4499.

Kaniuth K., D. Kleuren and H. Tremel. 1998. Sensitivity of GPS height estimates to tropospheric delay modelling, AVN No. 6,56

Kleusberg A., Teunissen P. 1996 GPS for Geodesy. Springer-Verlag. ISBN 3-540-60785-4.

Lowry A.R., Rocken C., Sokolovskiy K., Anderson D. 2002. Vertical Profiling of refractivity from ground-based GPS. Radio Science V. 37 Nº 3, 13.1-13.10.

Marel H. Van der. and Cost 716 team. 2004. COST-716 demonstration project for the near real-time estimation of integrated water vapour from GPS. Physics and Chemistry of the Earth, Parts A/B/C Volume 29, Issues 2-3, Probing the Atmosphere with Geodetic Techniques, Pages 187-199.

Meza A., Fernández L., Natali M.P., Moirano J., Brunini C. 2003 Aplicaciones del sistema GPS en la búsqueda de sitios para interferometría astronómica milimétrica. Boletín de la Asociación Argentina de Astronomía 46, 121-123.

Meza A., Fernández L., Brunini C., Gende M., Müller M., Aráoz L., 2005. Monitoring the variability of the ionosphere and troposphere over Argentina. Geophysical Research Abstracts, Vol. 7, 01223

Moirano, J. F. 2000. Materialización del Sistema de Referencia Terrestre Internacional en Argentina mediante observaciones GPS. PhD Tesis at Facultad de Ciencias Astronómicas y Geofísicas, Universidad Nacional de La Plata.

Monico, J F G ; Sapucci, L F . GPS Meteorologia: Fundamentos E Possibilidades De Aplicações No Brasil. In: Xxi Congresso Brasileiro De Cartografia, 2003, Belo Horizonte. Anais Do XXI Congresso Brasileiro De Cartografia, 2003. V. 1.

Natali, M. P. 2000. Práctica de la Especialidad, “Influencia de las ambigüedades en la determinación de alturas precisas con GPS”, Facultad de Ciencias Astronómicas y Geofísicas, Universidad Nacional de La Plata.

Natali M. P; Kaniuth K.; Brunini C.; Drewes H. 2002. ”Monitoring Tide Gauges Benchmarks in Argentina by GPS” IAG Symposia Volume 124. Vertical Reference Systems, 255-258.

Natali M. P. 2006.Tesis doctoral “Materialización de un sistema de referencia vertical mediante mareógrafos controlados con GPS” , Facultad de Ciencias Astronómicas y Geofísicas, Universidad Nacional de La Plata.

Niell A. 1996. Global mapping functions for the atmospheric delay at radio wavelengths. Journ. Geophys. Res. (101) 3227-3246.

Park, S. K. and K. Droegemeier, 1999 Sensitivity analysis of a moist 1D eulerian cold model using automatic differentiation. Monthly Weather Review, 127, 2180-2196.

Park, S. K. and K. Droegemeier, 2000. Sensitivity analysis of a 3D convective storm: Implications for variational data assimilation and forecast error. Monthly Weather Review, 128, 140-159.

Rocken, C. R. H. Ware, T. Van Hove, F. Solheim, C. Alber, J. Johnson, M. Bevis, and S. Businger, 1993. Sensing atmospheric water vapor with the Global Positioning System, Geophys. Res. Lett.,20(23), 2631-2634.

Rocken, C. Van Hove T., Johnson J. M., Solheim F., Ware R. H., Bevis M., Chiswell S., Businger S. 1996. J. Atm. Ocean. Tech., Vol. 12, 468-478.

Rocken, C., S. Sokolovskiy, J. M. Johnson, and D. Hunt, 2001. Improved Mapping of Tropospheric Delays, J. Atm. Ocean. Tech., Vol. 18, No. 7, 1205-1213.

Rocken, C., J. Braun, T. Van Hove, J. Johnson, and Y.-H. Kuo, 2003. Developments in ground-based GPS meteorology. Proceedings, International Workshop on GPS Meteorology, Tsukuba, Japan, 1-6.

Saastamoinen J. 1973 Contributions to the theory of atmospheric refraction: Part II: Refraction corrections in Satellite Geodesy. Bulletin Geodesique 107, 13-34.

Sapucci L. F., Monico J.FG.., Toledo Machado L.A., Herdies D. L, Ferreira de Souza R. A. 2007 Assimilacao Do Iwv-Gps No Brasil: Otimizacao Das Estimativas Do Atraso Zenital Troposferico Em Tempo Real. Revista Brasileira de Geofísica vol. 25(3), 267-279

Sapucci L.F., Machado L.A.T., Monico JFG. 2004. Modelagem da temperatura media troposferica no Brasil para quantificacao do IWV utilizando GPS. In: Congr. Bras. Met., 13.: 2004, Fortaleza. Anais do XIII Congresso Brasileiro de Meteorologia. Fortaleza: SBMET, 2004. CDROM.

Schüler, T., A. Pósfay, G. W. Hein, Biberger R. 2001. A Global Analysis of the Mean Atmospheric Temperature for GPS Water Vapor Estimation. Proceedings of ION-GPS 2001, The Institute of Navigation. 2476-2489; online: http://forschung.unibw-muenchen.de/ainfo.php?&id=521

Smith, T.L., S.G. Benjamin, B.E. Schwartz, and S.I. Gutman, 2000: Using GPS-IPW in a 4-D data assimilation system. Earth, Planets and Space, 52, 921-926.

Smith T.L., Benjamin S.G., Gutman S.I., Sahm S., Holub K. 2006. Operational Assimilation of GPSIPW observations in the 13-km RUC at NCEP 10th Symposium on Integrated Observing and 57 Assimilation Systems for the Atmosphere, Oceans, and Land Surface (IOAS-AOLS). 86th American Meteorological Society Annual Meeting. Atlanta, EE.UU.

Ware R. H., Fulker D. W., Stein S. A., Anderson D. N., Avery S. K., Clark R. D., Droegenmeier K.K.,

Kuettner J. P., Minster J. B., Sorooshian S. 2000. SuomiNet: A Real-Time National GPS Network for Atmospheric Research and Education. Bull. Amer. Meteorol. Soc., 81, 677-694.

Ware R. H., Fulker D. W., Stein S. A., Anderson D. N., Avery S. K., Clark R. D., Droegenmeier K.K.,

Kuettner J. P., Minster J. B., Sorooshian S. 2001. Real-time national GPS networks for atmospheric sensing. Jour. of Atmos, and Solar Terrestrial Phys. 63, 1315-1330.

Wiedner, M. C. 1998 Atmospheric Water Vapour and Astronomical Millimeter Interferometry, PhD Thesis. Cambridge University (http://cfa-www.harvard.edu/~mwiedner/)

Published

2009-11-05

How to Cite

Fernández, L. I., Meza, A., & Natali , M. P. (2009). Determinación del contenido de vapor de agua precipitable (PWV) a partir de mediciones GPS: primeros resultados en Argentina. Geoacta, 34(2). Retrieved from https://revistas.unlp.edu.ar/geoacta/article/view/13389

Issue

Section

Scientific work