Aplicación de un método de interpolación en regiones costeras

Authors

  • Jorge O. Pierini Comisión de Investigaciones Científicas de la Provincia de Buenos Aires, Instituto Argentino de Oceanografía,Departamento de Física, Universidad Nacional del Sur
  • Maximiliano G. Sassi Departamento de Física, Universidad Nacional del Sur,Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto Argentino de Oceanografía
  • Gerardo M.E. Perillo Departamento de Física, Universidad Nacional del Sur, Departamento de Geología, Universidad Nacional del Sur

Keywords:

Interpolation Method, Objective Analysis, Coastal Regions, Oceanography

Abstract

Data reconstruction of non stationary heterogenic fields obtained at the study area is a process intrinsic in coastal studies, for that is necessary to implement interpolation techniques that minimize the involved error. In general, a measured variable in coastal regions presents gaps in spatial or temporal information. These variables are involved under other processes that evaluate other variables and parameters. The results could be used to solve system of equations that could propagate significative errors which can be accumulated at the intervenient systems. The Objective Analysis is an interpolation procedure based in the Gauss-Markov mapping that can provide answers to these needs. Some authors had applied this method in meteorological and oceanographic fields, besides that is a good data-analysis tool and a basis for the design of observational arrays. In this work we propose to analyze an implementation of this interpolation technique based in the Objective analysis (or mapping), applied to two datasets of a different character from coastal regions. The first dataset is a topographic 82 measurement from a tidal marsh using an instrument specifically designed for this purpose. The other dataset, temporally distributed, are current measurements on a tidal channel during a complete tidal cycle. The results are compared with the solution obtained with the Inverse Distance method trough the estimation of an error curve. This curve is constructed based in the progressive generation of randomly distributed gaps until cover a 60% of the analyzed data. After that, the fields were reconstructed with the two methods plotting the error curve obtained as a function of gap number. The results suggest that the error curves for the two datasets using the Objective Analysis is always less than the Inverse Distance method. From the estimations we can infer that the Objective Analysis method represents in a better way the behavior of the original data.

Downloads

Download data is not yet available.

References

Bretherton, F.P. and J.C. Williams, 1980. Estimations from Irregular Arrays. Reviews of Geophysics and Space Physics, 18(4): 789-812.

Bretherton, F. P., R.E. Davis, and C.B. Fandry, 1976. A technique for objective analysis and design of oceanographic experiments applied to MODE-73. Deep Sea Research and Oceanographic Abstracts 23(7): 559-582.

Cressman, G.P., 1959. An operational objective analysis system. Mon. Wea. Rev., 87:367-374.

Emery, W.J. and Thomson, R.E., 1998. Data Analysis Methods in Physical Oceanography. Pergamon, Oxford, UK, 624 pp.

Freeland, H.J. and W.J. Gould, 1976. Objective analysis of meso- scale ocean circulation features. Deep-sea Res. 23(10): 915-923.

Gandin, L. S., 1963. Objective analysis of meteorological fields. Gidrometeor. Isdat., Leningrad. Israel Program for Scientific Translations, Jerusalem, 1965, 242 pp.

Holbrook, N. J. and N.L. Bindoff, 2000. A statistically efficient mapping technique for four-dimensional ocean temperature data. Journal of Atmospheric and Oceanic Technologies, 17:831-846.

Le Traon P.Y., G. Dibarboure, and N. Ducet, 1999. How many altimeters are needed to map the ocean mesoscale circulation? In: Smith NR, Koblinsky C (Eds.) TOPEX/Poseidon Scientific Working Team Meeting Abstracts, San Raphael, France, October 25-27.

Ludwick, J.C., 1974. Tidal Currents and Zig-Zag Sand Shoals in a Wide Estuary Entrance. Geological Society of America Bulletin, 85:717-726.

Mariano, A.J. and O.B. Brown, 1992. Efficient objective analysis of dynamically heterogeneous and nonstationary fields via the parameter matrix. Deep-Sea Res., 39(7/8): 1255-1271.

McIntosh, P.C., 1990. Oceanographic data interpolation: objective analysis and splines. Journal of Geophysical Research, 95:13259-13541.

Menemenlis, D., P. Fieguth, C. Wunsch, and A. Willsky, 1997. Adaption of a fast optimal interpolation algorithm to the mapping of oceanographic data. J. Geophys. Res., 102(C5): 10573–10584.

Minkoff, D.R., G.M.E. Perillo, D.E. Perez, S.D. Maraschín & M.G. Sassi, 2007 POTOS: a portable topographic system for measuring inaccessible muddy creek areas Wetlands Ecology and Management, 15(2):135-140.

Nuss, W.A., and D.W. Titley, 1994. Use of Multiquadric Interpolation for Meteorological Objective Analysis. Mon. Wea. Rev., 122:1611–1631.

Roemmich, D., 1983. Optimal estimation of hydrographic station data and derived fields. Journal of Physical Oceanography, 13:1544-1549.

Shepard, D., 1968. A two-dimensional interpolation function for irregularly-spaced data. Proceedings of the 1968 ACM National Conference: 517–524.

Sokolov, S., y S.R. Rintoul, 1999. Some Remarks on Interpolation of Nonstationary Oceanographic Fields. J. Atmos. Oceanic Technol., 16:1434–1449.

Walker, A.E. and J.L. Wilkin, 1998. Optimal averaging of NOAA/NASA Pathfinder satellite sea surface temperature data. Journal of Geophysical Research, 103:12869-12883.

Wilkin, J. L., M.M. Bowen and W.J. Emery, 2002. Mapping mesoscale currents by optimal interpolation of satellite radiometer and altimeter data. Ocean Dynamics, 52:95-103

Published

2008-12-12

How to Cite

Pierini, J. O., Sassi, M. G., & Perillo, G. M. (2008). Aplicación de un método de interpolación en regiones costeras. Geoacta, 33, 81–90. Retrieved from https://revistas.unlp.edu.ar/geoacta/article/view/13408

Issue

Section

Scientific work