Filling series of daily precipitation for long periods of time in plain areas. Case study superior basin of stream del Azul

Authors

  • Cristian Guevara Ochoa Instituto de Hidrología de Llanuras “Dr. Eduardo Jorge Usunoff”, IHLLA Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET
  • Ninoska Briceño Instituto de Hidrología de Llanuras “Dr. Eduardo Jorge Usunoff”, IHLLA Comisión de Investigaciones Científicas de la Provincia de Buenos Aires, CIC
  • Erik Zimmermann Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET, Centro Universitario Rosario de Investigaciones Hidroambientales, UNR
  • Luis Vives Instituto de Hidrología de Llanuras “Dr. Eduardo Jorge Usunoff”, IHLLA
  • Martin Blanco Instituto de Hidrología de Llanuras “Dr. Eduardo Jorge Usunoff”, Comisión de Investigaciones Científicas de la Provincia de Buenos Aires, CIC
  • Georgina Cazenave Instituto de Hidrología de Llanuras “Dr. Eduardo Jorge Usunoff”, Comisión de Investigaciones Científicas de la Provincia de Buenos Aires, CIC
  • Guadalupe Ares Instituto de Hidrología de Llanuras “Dr. Eduardo Jorge Usunoff”, IHLLA, Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET

Keywords:

Filling data series, Daily Precipitation, Plain

Abstract

The filling of missing daily precipitation data is a common problem in hydrological studies. The aim of this article is to make a comparison and evaluation of different methods to fill in missing daily rainfall data for long periods in plain areas. This study is carried out in the upper basin of the Azul stream for a period of nine years (2006-2014) and three stations that have 3287 complete data of daily precipitation and six stations with incomplete data are used. Seven methods were implemented for the filling of daily rainfall data: the linear regression method (MRL), the distance reasons method (MRD), the coefficients correlation method with neighboring stations (MRC) average reason method (MRP), the reasons distance method (MRD), the inverse distance weighted method (MIDW), following Markov chain method (MKV) and finally neural networks method (MRN). For the comparison and analysis of the different methodologies, different statistics and temporal graphs were applied, which measure the adjustment of the calculated data. Probabilistic and neural networks are the most suitable methods to fill data in plain areas. The methods applied in the study obtained a better adjustment in the autumn- 39 winter season with lower rainfall, compared to the spring-summer period where lower adjustments were obtained because to that in these times there are convective storms with very high rainfall intensities.

Downloads

Download data is not yet available.

References

Ahrens, B., (2006). Distance in spatial interpolation of daily rain gauge data. Hydrology and Earth System Sciences Discussions, 10(2): 197-208.

Alfaro, R. y R. Pacheco, (2000). Aplicación de algunos métodos de relleno a series anuales de lluvia de diferentes regiones de Costa Rica. Tópicos Meteorológicos y Oceanográficos, 7(1): 19-26.

Almazroui, M., M.N. Islam, F. Saeed, A.K. Alkhalaf, R. Dambul, (2017). Assessing the robustness and uncertainties of projected changes in temperature and precipitation in AR5 Global Climate Models over the Arabian Peninsula. Atmospheric Research 194: 202-213.

Antico, P. y N. Sabbione, (2010). Variabilidad temporal de la precipitación en la ciudad de La Plata durante el periodo 1909-2007: tendencias y fluctuaciones cuasiperiódicas. GEOACTA, 35: 44-53.

Bai, Y., J. Wu, Q. Xing, Q. Pan, J. Huang, D. Yang, X. Han, (2008). Primary production and rain use efficiency across a precipitation gradient on the Mongolia plateau. Ecology, 89(8): 2140-2153.

Baigorria, G.A. and J.W. Jones, (2010). GIST: A stochastic model for generating spatially and temporally correlated daily rainfall data. Journal of Climate, 23(22): 5990-6008.

Barros, V.R., J.A. Boninsegna, I.A. Camilloni, M. Chidiak, G.O. Magrín, M. Rusticucci, (2015). Climate change in Argentina: trends, projections, impacts and adaptation. Climate Change, 6(2): 151-169.

Barros, V.R., M.E. Doyle, I.A. Camilloni, (2008). Precipitation trends in southeastern South America: relationship with ENSO phases and with low-level circulation. Theoretical and Applied Climatology, 93(1): 19-33

Beck, H.E., A.I. Van Dijk, V. Levizzani, J. Schellkens, D.J. Miralles, B. Martens, A. De Roo, (2017). MSWEP: 3-hourly 0.25 global gridded precipitation (1979-2015) by merging gauge, satellite, and reanalysis data. Hydrology and Earth System Sciences, 21(1): 589-615.

Bonsal, B.R., C. Cuell, E. Wheaton, D.J. Sauchyn. E. Barrow, (2017). An assessment of historical and projected future hydro-climatic variability and extremes over southern watersheds in the Canadian Prairies. International Journal of Climatology, 37: 3934-3948.

Camarillo, J., F. Álvarez, A. Aguilar, M. López, (2010). Metodología de cálculo de valores de precipitación diaria en estaciones meteorológicas automáticas para la obtención de indicadores climáticos mensuales. Congreso Nacional de Tecnologías de la Información Geográfica, pp 679- 690.

Canziani, O., (2008). Cuenca del Salado: 100 años de lluvias. Revista Hydria 18.

Campozano, L., E. Sánchez, A. Aviles, E. Samaniego, (2015). Evaluation of infilling methods for time series of daily precipitation and temperature: The case of the Ecuadorian Andes. Maskana, 5(1): 99-115.

Cazenave, G. y L. Vives, (2014). Predicción de inundaciones y sistemas de alerta: Avances usando datos a tiempo real en la cuenca del arroyo del Azul. Revista de Geología Aplicada a la Ingeniería y al Ambiente, 33: 83-91.

Chen, C.J., S.U. Senarath, I.M. Dima-West, M.P. Marcella, (2017). Evaluation and restructuring of gridded precipitation data over the Greater Mekong Subregion. International Journal of Climatology, 37(1): 180-196.

Chen, F. and C. Liu, (2012). Estimation of the spatial rainfall distribution using inverse distance weighting (IDW) in the middle of Taiwan. Paddy and Water Environment, 10(3). 209-222.

Correa, S.W., R.C. Dias, J.C. Espinoza W. Collischonn, (2017). Multi-decadal Hydrological Retrospective: Case study of Amazon floods and droughts. Journal of Hydrology, 549: 667-684.

Coulibaly, P., F. Anctil, B. Bobee, (2000). Daily reservoir in flow forecasting using artificial neural networks with stopped training approach. Journal of Hydrology, 230 (3-4): 244-257.

Cowden, J.R., D.W. Watkins, J.R. Mihelcic, (2008). Stochastic rainfall modeling in West Africa: parsimonious approaches for domestic rainwater harvesting assessment. Journal of Hydrology, 361(1): 64-77.

Davolio, S., F. Silvestro, T. Gastaldo, (2017). Impact of rainfall assimilation on high-resolution hydrometeorological forecasts over Liguria (Italy). Journal of Hydrometeorology, 18: 2659-2680.

De Silva, R.P., N.D.K. Dayawansa, M.D. Ratnasiri, (2007). A comparison of methods used in estimating missing rainfall data. Journal of agricultural sciences, 3(2): 101-108.

Del Grosso, S., W. Parton, T. Stohlgren, D. Zheng, D. Bachelet, S. Prince, R. Olson, (2008). Global potential net primary production predicted from vegetation class, precipitation, and temperature. Ecology, 89(8): 2117-2126.

Díaz, L.B. and C.S. Vera, (2017). Austral summer precipitation interannual variability and trends over Southeastern South America in CMIP5 models. International Journal of Climatology, 37: 681-695.

Díaz, G., I. Cohen, R. Quiroz, J. Payán, C. Thorpe, I. Cruz, (2008). Interpolación espacial de la precipitación pluvial en la zona de barlovento y sotavento del Golfo de México. Agricultura Técnica en México, 34(3): 279-287.

Dingman, S.L., (2002). Physical Hydrology, Prentice Hall, 2nd ed. Prentice Hall.

Dye, S., P. Buckley, J. Pinnegar, (2017). Impacts of Climate Change on the Coastal and Marine Physical Environments of Caribbean Small Island Developing States (SIDS). En Report Card: Science Review, pp 1-9.

Giorgi, F., (2002). Variability and trends of sub-continental scale surface climate in the twentieth century. Part I: observations. Climate Dynamics, 18(8): 675-691.

Guevara, C., (2015). Una metodología para el manejo integral de extremos hídricos en una cuenca rural en zona de llanura. Tesis de Maestría en ecohidrología, Universidad Nacional de la Plata, Facultad de Ingeniería y Facultad de Ciencias Naturales y Museo, pp 154.

Gutiérrez, J.M., R. Cano, A.S. Cofiño, C.M. Sordo, (2004). Redes probabilísticas y neuronales aplicadas a las ciencias atmosféricas. INM, Ministerio de Medio Ambiente, Madrid.

Haykin, S., (1998). Neural Networks: A Comprehensive Foundation, 2nd ed. Macmillan College Publishing. Nueva York.

Haylock, M.R., T.C. Peterson, L.M. Alves, T. Ambrizzi, Y.M.T. Anunciação, J. Baez, V. Corradi, (2006). Trends in total and extreme South American rainfall in 1960 2000 and links with sea surface temperature. Journal of climate, 19(8): 1490 1512.

Hu, W., A. Duan, B. He, (2017). Evaluation of intra-seasonal oscillation simulations in IPCC AR5 coupled GCMs associated with the Asian summer monsoon. International Journal of Climatology, 37:476-496.

Huang, J., A.T. Islam, F. Zhang, Z. Hu, (2017). Spatiotemporal analysis the precipitation extremes affecting rice yield in Jiangsu province, southeast China. International Journal of Biometeorology, 61: 1863-1872.

Hutchinson, M.F., (1989). A new procedure for gridding elevation and stream line data with automatic removal of spurious pits. Journal of Hydrology, 106(3-4): 211-232.

IHLLA, (2003). Sistema de soporte para la gestión eficiente de los recursos hídricos en la llanura bonaerense, pp 1-267.

Kashiwao, T., K. Nakayama, S. Ando, K. Ikeda, M. Lee, A. Bahadori, (2017). A neural network-based local rainfall prediction system using meteorological data on the Internet: A case study using data from the Japan Meteorological Agency. Applied Soft Computing, 56: 317-330.

Kim, J.W. and Y.A. Pachepsky, (2010). Reconstructing missing daily precipitation data using regression trees and artificial neural networks for SWAT streamflow simulation. Journal of Hydrology, 394 (3–4): 305-314.

Kim, J.W. and J.H. Ryu, (2016). A heuristic gap filling method for daily precipitation series. Water resources management, 30(7): 2275-2294.

Kolokytha, E., S. Oishi, R.S. Teegavarapu, (2017). Sustainable Water Resources Planning and Management Under Climate Change. Singapore: Springer.

Kuligowski, R. and A. Barros, (1998). Using artificial neural networks to estimate missing rainfall data. Jawra Journal of the American Water Resources Association, 34: 1437-1447.

Li, J., J. Dodson, H. Yan, D.D. Zhang, X. Zhang, Q. Xu, J. Ni, (2017). Quantifying climatic variability in monsoonal northern China over the last 2200 years and its role in driving Chinese dynastic changes. Quaternary Science Reviews, 159: 35-46.

Linsley, R.K., M.A. Kohler, J.L. Paulhus, (1977). Hidrología para ingenieros, 2nd ed. McGraw-Hill Latinoamericana, S.A.

Maenza, R.A., E.A. Agosta, M.L. Bettolli, (2017). Climate change and precipitation variability over the western „Pampas‟ in Argentina. International Journal of Climatology, 37: 445-463.

Mehan, S., T. Guo, M.W. Gitau, D.C. Flanagan, (2017). Comparative Study of Different Stochastic Weather Generators for Long-Term Climate Data Simulation. Climate, 5(2): 26.

Nash, J.E. and J.V. Sutcliffe, (1970). River flow forecasting through conceptual models part I-A discussion of principles. Journal of hydrology, 10 (3): 282-290.

Nguyen - Le, D., T.J. Yamada D. Tran-Anh, (2017). Classification and forecast of heavy rainfall in northern Kyushu during Baiu season using weather pattern recognition. Atmospheric Science Letter, 18: 324-329.

Nkuna, T.R. and J.O. Odiyo, (2011). Filling of missing rainfall data in Luvuvhu River Catchment using artificial neural networks. Physics and Chemistry of the Earth, 36 (14-15): 830-835.

Orsolini, H., E. Zimmermann, P. Basile, (2008). Hidrología procesos y métodos, segunda ed. UNR editora, Rosario, Argentina.

Pizarro, R., (1993). Elementos Técnicos de Hidrología III. En: Proyecto Regional Mayor sobre Uso y Conservación de Recursos Hídricos en Áreas Rurales América Latina y el Caribe Universidad de Talca, pp 135.

Pizarro, R. y C. Ramírez, (2003). Análisis comparativo de cinco métodos para la estimación de precipitaciones areales anuales en períodos extremos. Bosque (Valdivia), 24(3): 31-38.

Ponce, V.M., (1989). Engineering Hydrology: Princples and Practices. 1st ed. Editorial Prentice Hall.

Putnam, A.E. and W.S. Broecker, (2017). Human-induced changes in the distribution of rainfall. Science Advances, 3(5): 1-14.

Rezaeianzadeh, M., L. Kalin C.J. Anderson, (2015). Wetland Water-Level Prediction Using ANN in Conjunction with Base-Flow Recession Analysis. Journal of Hydrologic Engineering, 22(1): 1-11.

Romero, E.L. y W.L. Casimiro, (2015). Evaluación de métodos hidrológicos para la completación de datos faltantes de precipitación en estaciones de la cuenta Jetepeque, Perú. Tecnológica-ESPOLRTE, 28(3): 42-52.

Rudd, A., V. Bell, A. Kay, (2017). National-scale analysis of simulated hydrological droughts (1891– 2015). Journal of Hydrology, 550: 368-385.

Ruigar, H. and S. Golian, (2016). Prediction of precipitation in Golestan dam watershed using climate signals. Theoretical and Applied Climatology, 123(3-4): 671-682.

Saba, I., J. Ortega, F. Cedeño, (2008). Estimación de datos faltantes en estaciones meteorológicas de Venezuela vía un modelo de redes neuronales. Revista de Climatología, 8: 51-70.

Published

2017-04-03

How to Cite

Guevara Ochoa, C., Briceño, N., Zimmermann, E. ., Vives, L., Blanco, M., Cazenave, G., & Ares, G. (2017). Filling series of daily precipitation for long periods of time in plain areas. Case study superior basin of stream del Azul. Geoacta, 42(1), 38–62. Retrieved from https://revistas.unlp.edu.ar/geoacta/article/view/13448

Issue

Section

Scientific work