2000-2011 geodetic mass balance of the glaciers in the Atuel catchment, central Andes of Mendoza (Argentina)

Authors

  • Daniel Falaschi Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales IANIGLA-CONICET
  • Maria Gabriela Lenzano Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales IANIGLA-CONICET
  • Takeo Tadono Earth Observation Research Center (EORC), Japan Aerospace Exploration Agency (JAXA),
  • Alberto Ismael Vich Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales IANIGLA-CONICET
  • Luis Eduardo Lenzano Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales IANIGLA-CONICET

Keywords:

geodetic mass balance, Atuel catchment, Centrales Andes of Argentina

Abstract

Although the Andes are one of the longest mountain ranges hosting large ice masses in the world, there are still vast areas of the cordillera where the trends in glacier changes are poorly known. The present study provides the first elevation, mass and volume change estimations for 198 glaciers (90.74 km2) in the río Atuel catchment in the Andes of Mendoza, Argentina, during the 2000-2011 period. By means of the geodetic mass balance method (differencing of the SRTM and ALOS PRISM) we estimated an overall elevation change of -0.24 ±0.31 m yr-1. This value equals an ice volume change of -0.022 ±0.028 km3 yr-1 and a mass loss of -0.20 ±0.26 m w.e. yr-1. This regional trend of slight glacier thinning is lower than previous mass balance records in the Central and Southern Patagonian Andes. The glacier surface elevation change maps allowed for the identification of the Portezuelo de Las Leñas massive collapse.

Downloads

Download data is not yet available.

References

Barsch, D., (1996). Rockglaciers. Indicators for the Permafrost and Former Geoecology in High Mountain Environment. Springer, Berlin. pp 331.

Benn, D.I. and D.J.A. Evans, (2010). Glaciers and glaciation. 2nd edition. Hodder Education, London, pp 802.

Berthier, E., Y..Arnaud, R. Kumar, R. Ahmad, P. Wagnon, P. Chevallier, (2007). Remote sensing estimates of glacier mass balances in the Himachal Pradesh (Western Himalaya, India). Remote Sensing of Environment 108: 327–338.

Bhattachayra, A., T. Bolch, K. Mukjerkee, T. Pieczonka, J. Kropáček, M.F. Buchroithner, (2016). Overall recession and mass budget of Gangotri Glacier, Garhwal Himalayas, from 1965 to 2015 using remote sensing data. Journal of Glaciology 62(236): 1115–1133.

Bolch, T., M. Buchroithner, T. Pieczonka, A. Kuner., (2008). Planimetric and volumetric glacier changes in the Khumbu Himal, Nepal, since 1962 using Corona, Landsat TM and ASTER data. Journal of Glaciology 54(187): 592-601.

Bolch, T., T. Pieczonka, K. Mukherjee, J. Shea, (2017). Glaciers in the Hunza Catchment (Karakoram) are almost in balance since the 1970s. 2017. The Cryosphere 11: 531–539.

Bown, F., A. Rivera, C. Acuña, (2008). Recent glacier variations at the Aconcagua basin, central Chilean Andes. Annals of Glaciology 48: 43-48.

Cobos, D. 1983. Inventario de glaciares de la cuenca del río Atuel. IANIGLA-CONICET, Mendoza, Argentina. pp 29.

Cobos, D. y J. Boninsegna, 1983. Fluctuations of some glaciers in the upper Atuel River basin, Mendoza, Argentina. En: Quaternary of South America and Antarctic Peninsula. Balkema, A.A. (Ed.). Rotterdam, pp 61-82.

Cogley, J.R., R. Hock, L.A. Rasmussen, A.A. Arendt, A. Bauder, R.J. Braithwaite, P. Jansson, G. Kaser, M. Möller, L. Nicholson, M. Zemp, (2011). Glossary of Glacier Mass Balance and Related Terms. UNESCO, Paris, pp 124.

Condom, T., A. Coudrain, J.E. Sicart, S. Théry, (2007). Computation of the space and time evolution of equilibrium-line altitudes on Andean glaciers (10°N–55°S). Global and Planetary Change 59: 189–202.

Corte, A.E. y L.E. Espizua, (1981). Inventario de glaciares de la cuenca del río Mendoza. IANIGLA-CONICET, Mendoza, pp 64.

DGA. 2010. Balance de masa en el glaciar Echaurren Norte temporadas 1997–1998 a 2008–2009. Dirección General de Aguas, Santiago de Chile, pp 32.

Escobar, F., G. Casassa, V. Pozo, (1995a). Variaciones de un glaciar de montaña en los Andes de Chile central en las últimas dos décadas. Bulletin de l'Institut francais d'études Andins 24: 683–695.

Escobar, F., V. Pozo, A. Salazar, M. Oyarzo, (1995b). Balance de masa en el glaciar Echaurren Norte, 1975 a 1992, Resultados preliminares. Dirección General de Aguas, Santiago, Chile, pp 109.

Espizúa, L.E., (1982). Glacier and Moraine Inventory of the Eastern Slopes of Cordon del Plata and Cordon del Portillo, Central Andes. Argentina. Tills and Related Deposits. A.A. Balkema/Rotterdam. 381-395

Espizua, L., (1998). Secuencia glacial del Pleistoceno tardío en el Valle del Río Grande, Mendoza, Argentina. Bamberger Geographische Schriften Bd. 15: 85-99.

Espizua, L.E. and P. Pitte, (2009). The Little Ice Age glacier advance in the Central Andes (35°S), Argentina. Palaeogeography, Palaeoclimatology, Palaeoecology 281: 345–350.

Evans, S.G., O.V. Tutubalina, V.N. Drobyshev, S.S. Chernomorets, S. McDougall, D.A. Petrakov, O. Hungr, (2009). Catastrophic detachment and high-velocity long-runout flow of Kolka Glacier, Caucasus Mountains, Russia in 2002. Geomorphology 105(3–4): 314-321.

Falaschi, D., M. Masiokas, T. Tadono, F. Couvreux, (2016). ALOS-derived glacier and rock glacier inventory of the Volcán Domuyo region (~36ºS), southernmost Central Andes, Argentina. Zeitschrift für Geomorphologie 60(3): 195-208.

Falaschi, D., T. Bolch, P. Rastner, M.G. Lenzano, L. Lenzano, A. Lo Vecchio, S. Moragues, (2017). Mass changes of alpine glaciers at the eastern margin of the Northern and Southern Patagonian Icefields between 2000 and 2012. Journal of Glaciology 63(238) 258-272.

Farr, T.G., P.A. Rosen, E. Caro, R. Crippen, R. Duren, S. Hensley, M. Kobrick, M. Paller, E. Rodriguez, L. Roth, D. Seal, S. Shaffer, J. Shimada, J. Umland, M. Werner, M. Oskin, D. Burbank, D. Alsdorf, (2007). The Shuttle Radar Topography Mission. Reviews of Geophysics 45(RG2004).

Fischer, M., M. Huss, M. Hoelzle, (2015). Surface elevation and mass changes of all Swiss glaciers 1980–2010. The Cryosphere 9: 525–540.

Gardelle, J., E. Berthier, Y. Arnaud, A. Kääb, (2013). Region-wide glacier mass balances over the Pamir-Karakoram-Himalaya during 1999–2011. The Cryosphere 7: 1263–1286.

Gardner, A.S. and 15 others, (2013). A reconciled estimate of glacier contributions to sea-level rise: 2003 to 2009. Science 340(6134): 852–857.

Garreaud, R.D., (2009). The Andes climate and weather. Advances in Geosciences 7: 1–9.

Groeber, P., (1954). Bosquejo paleogeográfico de los glaciares del Diamante y Atuel. Revista de la Asociación Geológica Argentina IX(2): 89–108.

Hock, R., M. de Woul, V. Radić, M. Dyurgerov, (2009). Mountain glaciers and ice caps around Antarctica make a large sea-level rise contribution. Geophysical Research Letters 36( L07501).

Huss, M., (2013). Density assumptions for converting geodetic glacier volume change to mass change. The Cryosphere 7: 877–887.

IANIGLA, (2015). Informe de la cuenca del río Atuel, Provincia de Mendoza. IANIGLA-CONICET, Secretaría de Ambiente y Desarrollo Sustentable de la Nación, Argentina, pp 67.

Kaser, G., A.G. Fountain, P. Jansson, (2003). A manual for monitoring the mass balance of mountain glaciers with particular attention to low latitude characteristics. UNESCO, Paris, France, pp 107.

Kääb and 18 others, (2018) Massive collapse of two glaciers in western Tibet in 2016 after surge-like instability. Nature Geoscience 11: 114-120.

Koblet, T., I. Gärtner-Roer, M. Zemp, P. Jansson, P. Thee, W. Haeberli, P. Holmlund, (2010). Reanalysis of multi-temporal aerial images of Storglaciaren, Sweden (1959–99) – part 1: determination of length, area, and volume changes. The Cryosphere 4: 333–343.

Leiva, J.C., (1999) Recent fluctuations of the Argentinian glaciers. Global and Planetary Change 22(1–4): 169–177.

Leiva, J.C., G.A. Cabrera, L.E. Lenzano, (2007). 20 years of mass balances on the Piloto glacier, Las Cuevas river basin, Mendoza, Argentina. Global and Planetary Change 59, 10–16.

Lenzano, M.G., (2013). Assessment of using ASTER-derived DTM for glaciological applications in the Central Andes, Mt. Aconcagua, Argentina. Photogrammetrie, Fernerkundung, Geoinformation 3: 197-208.

Lenzano, M.G., L. Lenzano, D. Trombotto Liaudat, J. Barón, E. Lannutti, (2013). Applying GNSS and DTM Technologies to Monitor the Ice Balance of the Horcones Inferior Glacier, Aconcagua Region, Argentina. Journal of the Indian Society of Remote Sensing 41(4): 969-980.

Le Quesne, C., C. Acuña, J.A. Boninsegna, A. Rivera, J. Barichivich, (2009). Long-term glacier variations in the Central Andes of Argentina and Chile, inferred from historical records and tree-ring reconstructed precipitation. Palaeogeography, Palaeoclimatology, Palaeoecology 281: 334–344.

Lüthje, M., L.T. Pedersen, N. Reeh, W. Greuell, (2006). Modelling the evolution of supraglacial lakes on the West Greenland ice-sheet margin. Journal of Glaciology 52(179): 608–618.

Le Bris, R. and F. Paul, (2015). Glacier-specific elevation changes in western Alaska. Annals of Glaciology 56(70): 184–192.

Llorens, R.E. and J.C. Leiva, (1995). Glaciological Studies in the High Central Andes Using Digital Processing of Satellite Images. Mountain Research and Development 15(4): 323–330.

Malmros, J.K., S.H. Mernild, R. Wilson, R., J.C. Yde, R. Fensholt, (2016). Glacier area changes in the central Chilean and Argentinean Andes 1955–2013/14. Journal of Glaciology 62(232): 391–401.

Marangunic, C., (1979). Inventario de glaciares en la hoya del Rio Maipo. Dirección General de Aguas (DGA), Santiago, Chile, pp 177.

Masiokas, M.H, R. Villalba, D.A. Christie, E. Betman, B.H. Luckman, C. Le Quesne, N.R. Prieto, S. Mauget, (2012). Snowpack variations since AD 1150 in the Andes of Chile and Argentina (30°–37°S) inferred from rainfall, tree-ring and documentary records. Journal of Geophysical Research 117(D05112).

Masiokas, M., D.A. Christie, C. Le Quesne, P. Pitte, L. Ruiz, R. Villalba, B.H. Luckman, E. Berthier, S.U. Nussbaumer, A. González-Reyes, J. McPhee, G. Barcaza, (2016). Reconstructing the annual mass balance of the Echaurren Norte glacier (Central Andes, 33.5º S) using local and regional hydroclimatic data. The Cryosphere 10: 927–940.

Mernild SH, A.P. Beckerman, J.C. Yde, E. Hanna, J.K. Malmros, R. Wilson, M. Zemp, (2015) Mass loss and imbalance of glaciers along the Andes Cordillera to the sub-Antarctic islands.Global and Planetary Change 103: 109-119.

Nuth, C. and A. Kääb, (2011). Co-registration and bias corrections of satellite elevation data sets for quantifying glaciar thickness change. The Cryosphere 5: 271–290.

Oerlemans, J. and W.J.J. van Pelt, (2015). A model study of Abrahamsenbreen, a surging glacier in northern Spitsbergen. The Cryosphere 9: 767–779.

Rabatel, A., H. Castebrunet, V. Favier, L. Nicholson, C. Kinnard, (2011). Glacier changes in the Pascua-Lama region, Chilean Andes (29° S): recent mass balance and 50 yr surface area variations, The Cryosphere 5: 1029-1041.

Rignot, E., K. Echelmeyer, W. Krabill, (2001). Penetration depth of interferometric synthetic-aperture radar signals in snowand ice. Geophysical Research Letters 28(18): 3501–3504.

Rivera, A., F. Bown, D. Carrión, P. Zenteno, (2012). Glacier responses to recent volcanic activity in Southern Chile. Environmental Research Letters 7(014036).

Rolstad, C., T. Haug, B. Denby, (2009). Spatially integrated geodetic glacier mass balance and its uncertainty based on geostatistical analysis: application to the western Svartisen ice cap, Norway. Journal of Glaciology 55(192): 666–680.

Ruiz, L., E. Berthier, M. Viale, P. Pitte, M. Masiokas, (2017). Recent geodetic mass balance of Monte Tronador glaciers, North Patagonian Andes. The Cryosphere 11: 619–634.

Sagredo, E.A. and T.V. Lowell, (2012). Climatology of Andean glaciers: A framework to understand glacier response to climate change. Global and Planetary Change 86–87: 101–109.

Schaefer, M., H. Machguth, M. Falvey, G. Casassa, E. Rignot, (2015). Quantifying mass balance processes on the Southern Patagonia Icefield. The Cryosphere 9: 25–35.

Takaku, J. and T. Tadono, 2009. PRISM On-Orbit Geometric Calibration and DSM Performance. IEEE Transactions on Geoscience and Remote Sensing 47(12): 4060–4073.

Wang, T., L. Mingsheng, D. Perissin, (2010). InSAR Coherence-Decomposition Analysis. IEEE Geoscience and Remote Sensing Letters 7(1): 156-160.

WGMS, (2015). Bulletin No. 1 (2012-2013). En: Global Glacier Change. Zemp, M., I. Gärtner-Roer, S.U. Nussbaumer, F. Hüsler, H. Machguth, N. Mölg, F. Paul, and M. Hoelzle (Eds.). Zurich, Switzerland, pp 230.

Zemp, M., E. Thibert, M. Huss, D. Stumm, D. Rolstad, C. Denby, C. Nuth, S.U. Nussbaumer, G. Moholdt, A. Mercer, C. Mayer, P.C. Joerg, P. Jansson, B. Hynek, A. Fischer, H. Escher-Vetter, H. Elvehøy, L.M. Andreassen, (2013). Reanalysing glacier mass balance measurement series. The Cryosphere 7: 1227–1245.

Zemp, M. and 38 others, (2015). Historically unprecedented global glacier decline in the early 21st Century. Journal of Glaciology 61(228): 745–762.

Published

2017-11-06

How to Cite

Falaschi, D., Lenzano, M. G., Tadono, T., Vich, A. I., & Lenzano, L. E. (2017). 2000-2011 geodetic mass balance of the glaciers in the Atuel catchment, central Andes of Mendoza (Argentina). Geoacta, 42(2), 7–22. Retrieved from https://revistas.unlp.edu.ar/geoacta/article/view/13593

Issue

Section

Scientific work